Background on AG: dimension of algebraic sets

Tuesday, April 18, 2017 11:52

Def. Let $X \subseteq k^n$ be an algebraic set. Then $\dim X := \dim k[X]$ where $\dim k[X]$ is the Krull dimension of k[X]. (Recall from commutative algebra:

dim A := sup &n | = xp, fxp, f. .. fxp in Spec (A) &.)

So geometrically it says:

dim $X := \sup_{n \in \mathbb{Z}} \{n \mid \exists X \supseteq X_n \supseteq X_n \mid \exists X \supseteq X$

The following theorems from commutative algebra help us show dim is a well-behaved notion. Some of these statements might be not proved in Math 200C.

Thm. A⊆B is an integral extension ⇒

· Spec(B) → Spec(A) is onto with finite fibers

· dim A = dim B.

Thm (Noether normalization)

A fig. k-algebra, integral domain \Longrightarrow $\exists x_1,...,x_n \in A \text{ which are algebraically indep. and}$

 $k[x_1,...,x_n] \subseteq A$ is integral.

Thm . dim ktx ... x7=n

. And so for any fig. k-alg, integral domain, A $\dim A = \text{tr.deg}_{k} \ Q(A) \ .$

Proposition $X \subsetneq Y$ irreducible algebraic sets \Rightarrow dim X < dim Y.

 $\frac{79}{10}$. By the above theorem, dim $X=d<\infty$. Let $X_0 \subsetneq \cdots \subsetneq X_d=X_d$

be a chain of irreducible, closed subspaces of X. Then

$$X_{o} \subsetneq \cdots \subsetneq X_{d} = X \subsetneq Y$$

is a chain of irreducible, closed subspaces of Y of length dot.

So dim Y ≥ d+1.

 $\lceil \overline{\text{Thm}} \cdot \mathbb{O} \quad \text{ht } (\langle f_1, ..., f_m \rangle) \leq m \quad \text{in any Noeth ring.}$

- 2) If $ht(\langle f_1,...,f_m \rangle) = m$, then \forall minimal prime up of (complete intersection $\langle f_1,...,f_m \rangle$ we have varieties.)

 ht(up) = m.
- 3 $p \subseteq q \in Spec(k[x_1,...,x_n]) \Rightarrow all the saturated chains have the same length.]$