First steps towards defining the quotient space G/H

uesday, May 2, 2017 9:34 AM

Let G be an affine algebraic group. Let H be a closed subgroup of G.

We would like to view G/H as a variety where G-G/H is a

morphism and G/G/H is an action of an algebraic group on

a variety (and some infinitesimal conditions), and we'd like to

get a universality property.

Lemma. $\{g \in G \mid S(g)(I(H)) = I(H)\} = H$.

 $\underline{\text{Pf.}}$ sg) $I(H) = I(H) \implies \forall f \in I(H)$, sg)(f)(e) = 0

 $\Rightarrow \forall f \in I(H), f(g^{-1}) = 0$

 $\Rightarrow g^{-1} \in H \Rightarrow g \in H$.

· Whet , Yfe ICH), Yh'eH, (schift) (h')

= o as fe I(H)

⇒ schiffe I(H).

Lemma. For any closed subgp H of G,

∃ p: G → GLCV): an algebraic group homomorphism,

He V JW E

V and W are finite-dimensional k-spaces

And $H = \{g \in G \mid \rho(g)(W) = W \}$.

Pf. Suppose I(H) is generated by $f_1,...,f_m$ as an ideal. Since $H\cap G$, after enlarging the list of f_i 's, if needed, we can assume that W:= span $\{f_1,...,f_m\}$ is H_i invariant. Let V be the G_i -submod. of $I(G_i)$ which is generated by $I(G_i)$ dim $I(G_i)$.

. $W \subseteq V$ are finite-dimensional, and we have an algebraic group homomorphism $G \xrightarrow{P} GL(V)$ (why?) s.t. $H \subseteq \{g \in G \mid P(g)(W) = W\}$.

 $P(g)(W) = W \Rightarrow s(g)(\langle W \rangle) = \langle W \rangle$

generated

as sg): k[G] ~> k[G] and sg) W=W.

Hence scg) I(H)=I(H), which implies geH.

From From Tor any closed subgraph of an affine algebraic group G, $\exists p: G \longrightarrow GL(V):$ an affine algebraic group homomorphism $\exists l \subseteq V$ a line s.t.

dim $V < \infty$ and $\{g \in G \mid p(g)(l) = l\} = H$.

. To prove this proposition. I need to recall the exterior alaebra $\Lambda(v)$

· To prove this proposition, I need to recall the exterior algebra $\Lambda(V)$ of a vector space V: $\Lambda(V) = T(V)/I$ where $T(V) := k \oplus V \oplus V \otimes V \oplus \cdots$ is the tensor algebra and $I = \langle x \otimes x | x \in V \rangle$. $\Lambda(V)$ has a natural grading. Its k^{th} grade is denoted by 1 V which is isomorphic to & V/In &V. For v1, ..., vk eV, let $v_1 \wedge \cdots \wedge v_k := v_1 \otimes \cdots \otimes v_k + (I \cap \otimes^k V)$. So $\underbrace{\left(v_{1}+v_{2}\right)\wedge\left(v_{1}+v_{2}\right)}_{o}=\underbrace{v_{1}\wedge v_{1}}_{o}+\underbrace{v_{1}\wedge v_{2}}_{o}+\underbrace{v_{2}\wedge v_{1}}_{o}+\underbrace{v_{2}\wedge v_{2}}_{o}$ $\Rightarrow v_1 \wedge v_2 = -v_2 \wedge v_1$ $\Rightarrow V_{o_1} \wedge ... \wedge V_{o_n} = Sgn(\sigma) V_1 \wedge ... \wedge V_n \quad \text{for any } \sigma \in S_n.$ For $a_{ij} \in k$, $\left(\sum_{j=1}^{m} a_{1j} v_{j}\right) \wedge \left(\sum_{j=1}^{m} a_{2j} v_{j}\right) \wedge \dots \wedge \left(\sum_{j=1}^{m} a_{nj} v_{j}\right)$ $= \sum_{1 \leq j_1, \dots, j_n \leq m} \left(\alpha_{1j_1} \alpha_{2j_2} \alpha_{nj_n} \right) \underbrace{v}_{1} \wedge \dots \wedge \underbrace{v}_{n}$ [So, if n>m, then vinning = o; and so ^V=0 if dim V<n.] $= \sum_{1 \leq i_{1} < m < i_{n} \leq m} \left(\sum_{\sigma \in S_{n}} \operatorname{Sgn}(\sigma) \prod_{j=1}^{n} a_{\sigma(c_{j})} \right) v_{i_{1}} \wedge \dots \wedge v_{i_{n}} \cdot \bigotimes$

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n1} & \cdots & a_{nm} \end{bmatrix}$$
 and for any $I = \{ v_1 < \cdots < v_n \}$, let

$$A_{\pm} := \begin{bmatrix} a_{1} i_{1} & a_{1} i_{n} \\ \vdots & \vdots & \vdots \\ a_{n} i_{1} & a_{n} i_{n} \end{bmatrix}_{n \times n}$$
 Then \bigotimes implies

$$\left(\sum_{j=1}^{m} a_{1j} v_{j}\right) \wedge \dots \wedge \left(\sum_{j=1}^{m} a_{nj} v_{j}\right) = \sum_{\substack{I \subseteq [1 \dots m] \\ |I| = n}} \det(A_{I}) v_{i_{1}} \wedge \dots \wedge v_{i_{n}}.$$

And so, if $V = span (v_1, ..., v_m)$, then

Suppose e1, ..., e are linearly independent. For any

$$I = \{ v_1 < \dots < v_n \}, \quad \text{let} \quad e_I := e_{v_1} \wedge \dots \wedge e_{v_n}.$$

If I, ..., I are distinct subsets of size n of [1..m], then

e_I, ..., e_I are linearly independent (why?).

Since, $\forall i \neq j$, $I_i \cap I_j^c \neq \emptyset$, $e_{I_i} \wedge e_{I_j} = 0$. Hence $e_1 \wedge \cdots \wedge e_m = 0$. So it is enough to show

e₁∧...∧e_{m≠0} if e₁,...,e_m are linearly independent,

which is clear (why?).]

Proposition. If $e_1, ..., e_m$ is a basis of V, then $\{e_i, ..., e_{in} | 1 \le i, < ... < i_n \le m \} \text{ is a basis of } \Lambda^n V.$ In particular, $\dim \Lambda^n V = \binom{m}{n}$.

For any $g \in GL(V)$, the action of g on V extends linearly to $\Lambda(V)$, and so for any n we get a homomorphism $\rho: GL(V) \longrightarrow GL(\Lambda^{n}V)$.

• $\rho(g)(v_1 \wedge \cdots \wedge v_n) := g \cdot v_1 \wedge \cdots \wedge g \cdot v_n$

Let $e_1,...,e_m$ be a basis of V, then $\{e_{\underline{I}} | \underline{I} \subseteq \underline{I} : \underline{m} \}$ is a basis of $\Lambda^n V$ and

$$\rho(g) \in_{\mathbf{I}} = \underbrace{\sum_{J \in \mathcal{I}_1 = m}}_{J \subseteq I - mJ} \in_{J = m}$$
where $g = \begin{bmatrix} g_{2iJi} & \dots & g_{2iJi} \\ \vdots & \vdots & \vdots \\ g_{2iJi} & \dots & g_{2iJi} \end{bmatrix}$, $I = \underbrace{2i < \dots < in S}$, and $I = \underbrace{2i < \dots < in S}$, and

 $ge_i = \sum_{j=1}^m g_{ij} e_j$

Proposition. Let W be a subspace of a finite-dimensional space V. Then

 $\{g \in GL(V) \mid g \mid W = W\} = \{g \in GL(V) \mid f(g)(\bigwedge^d W) = \bigwedge^d W\}$ where $M = \dim W$.

 $\frac{Pf}{}$. Let $e_1,...,e_d$ be a basis of W and $e_1,...,e_m$ be a basis of

V. Then $\beta(g)(e_1 \wedge \cdots \wedge e_1) = \sum_{\substack{J \subseteq [1 \cdots m] \\ |J| = d}} \det(g_{[I \cdots d], J}) e_J$

 $g W = W \implies \rho(g) (\wedge^d W) = \wedge^d W$

Suppose $gW \neq W$ and $f(g) \in I_{1...dJ} = c_g \in I_{1...dJ}$.

Then the matrix of g in the bosis $\{e_1, ..., e_m\}$ is of the form $d \in A \setminus C \setminus B \neq 0$,

det $A = c_g \neq 0$ and det X = 0 if $X \neq A$ and X is a dxd submatrix of $\begin{bmatrix} A \\ B \end{bmatrix}$.

Let v be a non-zero row of B. Then v is in the row span of $A = \begin{bmatrix} v_1 \\ \vdots \\ v_d \end{bmatrix}$ (A is invertible). So $\exists i$ s.t.

is invertible (why), which contradicts (*)

Proof of Proposition S

We have already found an algebraic group homomorphism $\rho: G \longrightarrow GL(V)$ and a subspace $W \subseteq V$ s.t. H = { g ∈ G | P(g) W = W}. Now consider GPGL(V) #GL(dV) Then $2g \in G \mid \mathcal{T}(g)(1) = 12 = 2g \in G \mid P(p(g))(1) = 1$ $= \{ g \in G \mid p(g)(W) = W \} = H.$ We also notice that $p: GL(V) \rightarrow GL(\Lambda^d V)$ is an algebraic group homomorphism (why!). So $\pi: G op GL(\Lambda^d V)$ is an algebraic group homomorphism. Corollary. Let G be an affine algebraic group and H be a

closed subgroup of G. Then

I a quasi-projective homogeneous space X for G together with a point x = X s.t.

D The fibers of g → g.x. are cosets of H.

Pf. Let p: G→GL(V) and line l ⊆ V be as in Prop. S

Then G.II] $\subseteq P(V)$ is open in $\overline{G.IIJ}$. So $X:=G.\overline{IIJ}$ is a quasi-projective variety. Let $x_o:=IlJ\in X$. Then $G_{x_o}=H$ by Prop. S. Part (b) is a conseq. of part (a) and the fact that X is the G-orbit of x_o . \blacksquare We would like to prove a universal property for the quotient space G/H:

Theorem. I! a homogeneous space G/H for G together with a point of s.t.:

H GAY and Stab (y₀) = H for some y₀ = Y, then

I G-equivariant morphism G/H + Y s.t. + (x₀) = y₀.

Notice that the above corollary gives us a homogeneous space X and a point x_0 s.t. for (Y, y_0) as in the above theorem we get a G-equivariant map $X \xrightarrow{\Phi} Y$ s.t. $\Phi(x_0) = y_0$. We have to show this map is actually a morphism.

Tor this are need more background from Algebraic Geometry.