Actions of algebraic groups Monday, April 24, 2017 10:50 PM Let G < k" be an aiffine algebraic group and X be a variety We say G acts on X, denote it by GAX, if $\exists a \mod G \times X \longrightarrow X$ st $g_1 \cdot (g_2 \cdot \chi) = (g_1 g_2) \cdot \chi$ (q, x) | → g·x What can we say about the orbits? Lemma. (a) An orbit G.x is open in its closure. (b) There exist closed orbits. $G \longrightarrow X$ a morphism $\exists \varphi \neq U \subseteq Im \varphi$. $\varphi_{\chi_{q}}$ open in $Tm \varphi_{\chi_{q}}$. $\Rightarrow \forall x \in G \cdot \pi_{o}, \exists U_{x} \text{ open} \qquad x \in U_{x} \subseteq G \cdot \pi_{o}$ $(?) = \pi_{1}, \dots, \pi_{m}: G \cdot \pi_{o} = \bigcup_{i=1}^{m} \bigcup_{\mathcal{K}_{n}} \Rightarrow G \cdot \pi_{o} \text{ is open}.$ 6 G.x. \G.x. is closed and G-invariant. $\Sigma := \{Y \subseteq X \mid Y \text{ closed} \text{ and } G - \text{ invariant}\}$ has a minimal set Y_{o} . Let $x_0 \in Y$. If $G \cdot x_0 \neq Y$, then $\overline{G \cdot x_0} \setminus \overline{G \cdot x_0} \not\subseteq Y$ in J. which is a contradiction. Theorem. Let G be an affine algebraic group and X be an affine

variety. Suppose
$$G \cap X$$
. Then
() $s: G \to GL(k[X])$, $s(g)(f)(x) := f(g^{4} \cdot x)$
is a group honomorphism; i.e. G acts linearly on $k[X]$.
(2) Let $m^{*}: k[X] \to k[G] \otimes k[X]$ be the co-action map.
Then $W \subseteq k[X]$ is G -invariant $\Leftrightarrow m^{*}(W) \subseteq k[G] \otimes W$.
(3) \forall finite-dimensional subspace V of $k[X]$, there is
a finite-dimensional subspace W of $k[X]$ st.
(4) $V \subseteq W$ (b) W is G -invariant.
(7) $W \subseteq W$ (b) W is G -invariant.
(7) $Y \subseteq W$ (c) W is G -invariant.
(7) $Y \subseteq W$ (c) W is G -invariant.
(7) $Y \subseteq W$ (c) W is G -invariant.
(7) $Y \subseteq W$ (c) W is G -invariant.
(7) $Y \subseteq W$ (c) W is G -invariant.
(7) $Y \subseteq W$ (c) W is G are morphisms, $s(g)(f)$
is in $k[X]$. It is easy to check that $f \mapsto s(g)(f)$ is an
action, and $s(g)$ is linear
(2) Let $\xi f_i g$ be a k -basis of W , and let/s extend
it to $\xi f_i g$ to get a k -basis of $k[X]$.
Let $m^*(f_i) = \sum_{i \in I} \xi_{ij} \otimes f_j$. Then for any $g \in G$
 $j \in ILJ$
(we have $m^*(f_i)(g,x) = \sum_i \xi_{ij}(g) f_j(x)$
 $\Rightarrow f_i(g \cdot x) = \sum_i \xi_{ij}(g) f_j(x)$

$$\Rightarrow s(g^{-1}) (f_{i}) = \sum_{i} \xi_{ij}(g) f_{j} .$$

$$\Rightarrow s(g^{-1})(f_{i}) \in W \quad \text{if and only if } \xi_{ij}(g) \text{ for } j \in J.$$
Hence $g \cdot f_{i} \in W \quad \Leftrightarrow \xi_{ij} = V \quad j \in J \quad$

$$\forall g \in G \quad \Leftrightarrow f_{i} \circ F_{i} \Rightarrow \forall g \in J \quad$$

$$\forall g \in G, \quad g \in f_{i} = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\forall g \in G, \quad s(g^{-1}) (f) = \sum_{i=1}^{m} \xi_{i} \circ f_{i} \Rightarrow \quad$$

$$\Rightarrow the \ G_{-} \ mod. \ generated \ by \ f \ is \ finite-dimensional. \quad$$

$$\hline \text{Theorem. Any aftrine algebraic group is a linear algebraic group.$$

$$Pf: \quad Let \ G \ be \ an \ aftrine \ algebraic group. \ Then \ G \cap G \ by \quad$$

$$heft \ multiplication. \ So \ by \ the \ above \ theorem, part (S), \ there \quad$$

$$are \ linearly \ independent \ functions \ f_{1}, ..., f_{m} \in k \$$

$$\Rightarrow I \ G \ g = k \ I \ f_{1}, ..., f_{m} \$$

$$S \ \exists \ \xi_{ij} \in k \$$

$$\text{IGJ} = k \ I \ f_{1}, ..., f_{m} \$$

$$S \ \exists \ \xi_{ij} \in k \$$

$$\text{IGJ} = k \ G \ M_{m}(k) \quad be \ \ \Theta(g) = \$$

$$\left[\xi_{ij} \ G \right] \$$

$$\text{Since } \ Sg_{i} \ g_{2} \$$

$$\text{and } \ Sg_{i} \ Sg_{i} \$$

$$\text{and } \ Sg_{i} \ Sg_{i} \$$

$$\text{and } \ Sg_{i} \ Sg_{i} \$$

that
$$\Theta: G \rightarrow GL_{m}(k)$$
 is a group homomorphism.
. Since $\xi_{ij} \in k \text{ IGJ}$. Θ is a morphism of algebraic sets. So
 Θ is an affine algebraic group homomorphism. Hence $\text{Im}(\Theta) =: \overline{G}$
is an algebraic subgroup of $GL_{m}(k)$.
. $\Theta^{*}: k \text{ IGJ} \rightarrow k \text{ IGJ}$ is an isomorphism (?)
. $\Theta^{*}: k \text{ IGJ} \rightarrow k \text{ IGJ}$ is an isomorphism (?)
. $\Theta^{*}(\underline{X}_{ij}) = \xi_{ij}$ and $f_{i}(g) = \sum_{j=1}^{m} \xi_{ij}(g^{-1})f_{j}(e)$
Let $y_{ij} = i^{*}(\underline{X}_{ij})$ othere $i^{*}: k \text{ IGL}_{n} \text{ I} \rightarrow k \text{ IGL}_{n} \text{ I}$ is
the Q-inverse map. Then $\Theta^{*}(\underline{Y}_{ij})(g) = \xi_{ij}(g^{-1})$.
 $\Rightarrow f_{i} \in \text{ Span of } \xi_{ij} \le \ldots \Rightarrow \Theta^{*}$ is surjective.
Remark. As we mentioned earlier, it is NOT enough to check
ker $(\Theta) = I$:
 $SL_{p}(k) \rightarrow PGL_{p}(k)$ has trivial keenel and it is
 $g \mapsto fd(g)$
surjective if k is algebraically closed and $Chor(k) = p$,
but it is NOT an isomorphism.