Background on AG: sheaf of regular functions; varieties

Tuesday, April 25, 2017 10:26 AM To understand quotient spaces G/H, orbits, etc., we need to go beyond algebraic sets. To do so 1st. We go "boal": get algebraic structures on open sets. 2nd. We "glue" finitely many of algebraic sets according to the additional local data. <u>Def</u>. Let $X \subseteq k^n$ be an algebraic set and U be a nord of $x_{o} \in X$. We say a function $f: U \rightarrow k$ is regular at x, if $\exists V \subseteq U$ open norm of x, and g, he k[X] s.t. $() \forall x e V, h(x) \neq o$ (2) $\forall x \in V$, $f(x) = \frac{g(x)}{h(x)}$. • We say f: U -> k is regular if YxeU, f is regular at x. Let Ox(U) be the set of all regular k-valued functions on U. Lemma. $O_{\chi}(U)$ is a k-algebra open . If $U_1 \subseteq U_2$, then $f \mapsto f|_{U_1}$ induces a k-alg. inischim () (TT) (TT)

AlgebraicGroups Page 1

AlgebraicGroups Page 2

$$\Rightarrow \mathcal{D}_{h_{1}} \supseteq V \supseteq X \setminus V(f_{3}) =: \mathcal{D}_{f_{3}} \Rightarrow x.$$

$$\Rightarrow V(f_{3}) \subseteq V(f_{3})$$

$$\Rightarrow \sqrt{(f_{3})} \supseteq \sqrt{(f_{3})}$$

$$\Rightarrow \sqrt{(f_{3})} \supseteq \sqrt{(f_{3})}$$

$$\Rightarrow \sqrt{(f_{3})} \supseteq \sqrt{(f_{3})}$$

$$\Rightarrow \sqrt{(f_{3})} \supseteq \sqrt{(f_{3})}$$

$$\Rightarrow \sqrt{(f_{3})} \supseteq \sqrt{(f_{3})} = \frac{1}{\sqrt{(f_{3})}}$$

$$\Rightarrow \sqrt{(f_{3})} \supseteq \sqrt{(f_{3})} = \frac{1}{\sqrt{(f_{3})}}$$

$$\forall x \in V \supseteq \mathcal{D}_{f_{3}} \xrightarrow{(f_{3})}$$

$$\forall x \in V \supseteq \mathcal{D}_{f_{3}} \xrightarrow{(f_{3})}$$

$$\forall x \in V \supseteq \mathcal{D}_{f_{3}} \xrightarrow{(f_{3})}$$

$$\forall x \in \mathcal{O}_{f_{3}}, \text{ and } x_{0} \in \mathcal{D}_{f_{3}}.$$

$$\Rightarrow \sqrt{(f_{3})} \supseteq \sqrt{(f_{3})} \xrightarrow{(f_{3})}$$

$$\Rightarrow \sqrt{(f_{3})} \supseteq \sqrt{(f_{3})} \xrightarrow{(f_{3})}$$

$$\Rightarrow \sqrt{(f_{3})} \supseteq \sqrt{(f_{3})} \xrightarrow{(f_{3})} \xrightarrow{(f_{3})}$$

$$\Rightarrow \sqrt{(f_{3})} \supseteq \sqrt{(f_{3})} \xrightarrow{(f_{3})} \xrightarrow{($$

$$\begin{aligned} \frac{\partial f_{h_1}}{\partial h_1} &= \frac{\partial z}{h_2} \Rightarrow \exists s \notin \text{Hh}_{x_0} \text{ s.t. s} (h_2 g_1 - h_1 g_2) = 0 \\ \Rightarrow & scores h_1(x_0) h_2(x_0) \neq 0 \text{ and in } \mathcal{D}_{sh_1h_2} \text{ are have} \\ & g_1(x_0) h_2(x_0) = \frac{\partial z}{h_2(x_0)} \mapsto [\frac{\partial f_{h_1}}{h_1}, \mathcal{D}_{h_2}] = [\frac{\partial g_{h_2}}{h_2}, \mathcal{D}_{h_2}]. \end{aligned}$$

$$(2) \quad h_{n_1} \text{ extractions is clear.} \\ (3) \quad h_{n_1} \text{ extractions is clear.} \\ (4) \quad g(x) = 0 \quad \Rightarrow \\ \quad \exists x_n \in U \quad h_{h_n} \text{ hold.} \quad \forall x \in V. \\ \quad \Rightarrow \quad g/h_n = \frac{1}{\partial h_1} / \frac{1}{h_{h_1}} = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad g/h_n = \frac{1}{\partial h_1} / \frac{1}{h_{h_1}} = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad g/h_n = \frac{1}{\partial h_1} / \frac{1}{h_{h_1}} = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad g/h_n = \frac{1}{\partial h_1} / \frac{1}{h_{h_1}} = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad g/h_n = \frac{1}{\partial h_1} / \frac{1}{h_{h_1}} = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad g/h_n = \frac{1}{\partial h_1} / \frac{1}{h_{h_1}} = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad g/h_n = \frac{1}{\partial h_1} / \frac{1}{h_{h_1}} = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad g/h_n = \frac{1}{\partial h_1} / \frac{1}{h_{h_1}} = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad g/h_n = \frac{1}{\partial h_1} / \frac{1}{h_{h_1}} = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad f_{h_n} (x_n) \neq 0 \quad \text{ for all is surjective.} \\ \quad f \in Q_n(X) \quad \Rightarrow \quad \forall x \in X , \quad \exists g_n^{(n)}, h_n^{(n)} \in k[X] \quad \text{srt.} \\ \quad (1) \quad f_{h_n} (x_n) \neq 0 \quad (2) \quad \forall x \in X, \quad \text{ether } f(x_n) = \frac{1}{\partial h_n} / \frac{1}{h_n} (x_n) = 0 \quad \Rightarrow \quad f_{h_n} (x_n) = h_{h_n} (x_n) = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad f_{h_n} (x_n) = h_{h_n} (x_n) = h_{h_n} (x_n) = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad h_{h_n} (x_n) = h_{h_n} (x_n) = h_{h_n} (x_n) = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad h_{h_n} (x_n) = h_{h_n} (x_n) = h_{h_n} (x_n) = 0 \quad \Rightarrow \\ \quad \Rightarrow \quad h_{h_n} (x_n) = h_{h_n} (x_n) = h_{h_n} (x_n) = 0 \quad \Rightarrow \quad h_{h_n} (x_n) = h_{h_n} (x_n) = h_{h_n} (x_n) = 0 \quad \Rightarrow \quad h_{h_n} (x_n) = h_{h_n} (x_n) = h_{h_n} (x_n) = 0 \quad \Rightarrow \quad h_{h_n} (x_n) = h_{h_n} (x_n) = h_{h_n} (x_n) = 0 \quad$$

 $() h_{x}(x) \neq o () h_{x}(x) f(x) = g_{x}(x) \quad \forall x \in X .$ So = x1,..., xme X and q, ..., q e k[X] st. $\sum q_i h_{\chi_i} = 1 \in k[X]$. $\sum_{i} q(x) h_{x_i}(x) f(x) = \sum_{i} q_i(x) q_{x_i}(x)$ $f(x) = \sum_{i} q_i(x) g_{x_i}(x) \in \Phi(k[X]).$ Def. A prexariety is a topological space X with a sheaf of k-valued functions Ox; with an open covering X2: s.t. $(X_i, O_X())$ is an algebraic set with its sheaf of regular k-valued functions. · Let X and Y be two prevarieties. $\varphi: X \longrightarrow Y$ is called a morphism if 1) It is continuous Q Y U⊆Y open, f∈Q(V), foφ ∈ Q(Φ(U)). $\begin{bmatrix} k & alg. homo. Q(U) \longrightarrow Q(\Phi^{-1}(U)) \end{bmatrix}$. A variety is a prevariety X st. $\Delta_{X} = \frac{3}{2}(x,x) | x \in X \frac{3}{2}$ is closed in X. (Separation axiom)

varieties.]

$$\frac{14!}{14!} \cdot \text{ for any } x \in U, \exists f_x \in k[X] \quad s \downarrow \cdot x \in D_{f_x} \subseteq U$$

$$\Rightarrow V(\langle f_x | x \in U \rangle) \subseteq X \setminus U = V(\langle g_1 \cdots g_n \rangle)$$

$$\Rightarrow \sqrt{\langle f_x \rangle_{n \in U}} \supseteq \langle g_1, \cdots g_n \rangle$$

$$\Rightarrow \exists x_i \in U \quad s \downarrow \cdot \langle f_{x_i} | i \leq i \leq k \rangle \supseteq \langle g_1, \cdots g_n \rangle$$

$$\Rightarrow V(\langle f_{x_i} | i \leq i \leq k \rangle) \subseteq X \setminus U$$

$$\Rightarrow U \bigcirc g_{x_i} \supseteq U \Rightarrow U = U \bigcirc g_{x_i} \text{ is a finite open}$$

$$D_{f_{x_i}} \subseteq U \qquad \text{ over}.$$

$$0 \quad O_{f_{x_i}} \subseteq U \qquad \text{ over}.$$

$$f_{x_i} \cap U \Rightarrow (X_f, O_{X_f}) \quad \text{ where } X_f \text{ is the algebraic}$$

$$s t \quad \{(x, a) \in k^n \times k | \forall g \in I(X), g(X) = o, f(X) \cdot a = 1\}$$

$$f_{x_i} \circ D_{f_{x_i}} \Rightarrow continuous \cdot (?)$$

$$\cdot \varphi^{-1} = \Pr_X | is \quad continuous \cdot (?)$$

$$\cdot \varphi^{-1} = \Pr_X | is \quad continuous \cdot (?)$$

$$\cdot \varphi^{-1} = \Pr_X | is \quad continuous \cdot (?)$$

$$\cdot \varphi^{-1} (C) := \{x \in D_f \mid f_i(x, A_f_{f(X)}) = 0 \quad \forall i \in I\}$$

$$\int_{t_i}^{t_i(X_i, T_{f(X)})} = \frac{g_i(X)}{t_i(X)} \quad for \quad some \quad g_i \in k \in I[X_i]$$

$$= \varphi^{-1}(C) := \{x \in D_f \mid g_1(x) = 0 \quad \forall i \in I\}$$

$$clased \cdot j \to \psi \notin is \quad continuous.$$

. Let U be a non-empty open subset of
$$X_{\pm}$$
. So
 $X_{\pm} \cup = \nabla(\frac{4}{i}(x,x_{1}))$. Let $g_{i} \in k[X]$ be st.
 $f_{i}(x, \frac{4}{4}_{00}) = \frac{g_{i}(x_{1})}{f_{1}(x_{1})}$. Then $d_{5}^{\pm}(U) = X \setminus \nabla(f, g_{i}; iei)$.
If $reQ_{i}(U)$, then $\forall (x, \frac{4}{4}_{0x}) e U$, there
are g_{x} , $h_{x} \in k[X_{\pm}]$ st.
(D) $h_{x}(x, \frac{4}{4}_{0x}) \neq o$
(E) $\forall (x', a') e U$, $h_{x}(x',a') r(x'a') = g_{x}(x'a')$.
There are \overline{g}_{x} , $\overline{h}_{x} \in k[X]$ st. $g_{x}(x', \frac{4}{4}_{0x}) = \frac{\overline{3}x(x')}{f_{0}(x')}$
and $h_{x}(x', \frac{4}{4}_{0x'}) = \frac{\overline{h}_{x}(x')}{f_{0}(x')}$ for any $x' \in D_{\pm}$.
(D) $h_{x}(x) \neq f_{0}(x') = \overline{g}_{x}(x')$.
and $h_{x}(x', \frac{4}{4}_{0x'}) = \frac{\overline{h}_{x}(x')}{f_{0}(x')}$ for any $x' \in D_{\pm}$.
So $\varphi^{*}(r) \in O_{i}(f^{\pm}(U))$ (as $x \in U$ was arbitrary.)
Since φ is surjective, $\varphi^{*}: O_{x}(U) \rightarrow O_{D_{i}}(\varphi^{\pm}(U))$ is
injective.
• φ^{*} is clearly a k -alg. hono.
• $\overline{r} \in Q_{i}(\varphi^{\pm}(U)) \Rightarrow \exists \widehat{r} \in O_{x}(\varphi^{\pm}(U))$ st.
 $\overline{r} = \overline{f}$.

Let
$$r: U \rightarrow k$$
, $r(x, t_{free}) := ttex)$. Since i is regular
out any quaint of $\neq^{=1}(U)$, r is regular at any quaint of U . (?)
So $\phi^{*}: Q_{ij}(U) \rightarrow Q_{ij}(\phi^{=1}(U))$ is surjective.
• Separation axiom. $\Delta_{U} \subseteq U \times U$ is closed.
The topology on $U \times U$ is induced by $X \times X$ (coly ?)
And in $X \times X$, Δ_{X} is closed (?). So $\Delta_{U} = U \times U \cap \Delta_{X}$ is
closed in $U \times U$.

Proposition. (X, Q_{X}) variety? $\rightarrow (U, Q_{X}|_{U})$ is a variety.
 $U \subseteq X$ open J

Proposition. $U \times U_{i}$ is an open affine covering. Then
 $U = U (U \cap X_{i})$ is an open quasi-affine covering, and by
the above result $U \cap X_{i}$ has open affine covering $U \times_{ij}$.

 $\rightarrow U$ is a prevanety.

 $\Delta_{U} = \Delta_{X} \cap U \times U$ is closed in $U \times U$ as the topology
on $U \times U$ is the induced topology from $X \times X$.
Ex. $i: X \rightarrow \Delta_{X}$, $x \mapsto (X,X)$ is a homeomorphism if X is a

preveniety.
Lemma Suppose X is a variety. Then
$$(A_{X'}, O_{XiX}|_{A_X})$$
 is
a variety and $i: X \rightarrow A_X$ is an isomorphism of varieties.
Pf. Ex.
Useful criterion
 $(X: variety; U, V: affine open sets in X.$
 $\Rightarrow UnV : affine open sets
 $\cdot \langle O_X(U)|_{UnV}, O_X(V)|_{UnV} \rangle = O_X(UnV).$
 $(X: prevariety; X = \bigcup_{i=1}^{U} X_i : open affine covering$
 $X: variety $\Leftrightarrow \forall U_i, \langle O_X(X_i)|_{X_i \cap X_j}, O_X(X_j)|_{X_i \cap X_j}$
 $= O_X(X_i \cap X_j)$
 $(as k-alg.).$
 $Pf. (UnV) = \langle O_X(U)|_{UnV}, O_X(V)|_{UnV} \to A_X(UXV).$
 $\Rightarrow O_X(UnV) = \langle O_X(U)|_{UnV}, O_X(V)|_{UnV}$.$$

(b) ex. 🔳 <u>Ex.</u>____ is NOT a variety. $X = X_1 \cup X_2$ is an open affine cover. Observe $O_{\chi}(X_1 \cap X_2) \simeq k [x] [1/x]$ $\langle \mathcal{O}_{\chi}(X_1) |_{X_1 \cap X_2}, \mathcal{O}_{\chi}(X_2) |_{X_1 \cap X_2} \simeq k [x]$ Projective space $P(k^{n+1})$ $\mathbb{P}(\mathbf{k}^{\mathsf{m}}) := \{ [\mathbf{x}_{i}: \mathbf{x}_{1}: \dots: \mathbf{x}_{n}] \mid \mathbf{x}_{i} \in \mathbf{k} ; \exists i, \mathbf{x}_{i} \neq o \}.$ Let $X_i := \{ [X_0 : X_1 : \dots : X_n] \in \mathbb{P}(k^n) \mid X_1 \neq 0 \}$. Then $(x_0, ..., x_1, ..., x_n) \mapsto [x_0: x_1:...: 1: ...: x_1]$ is a bijection between k^n and X_i . We view $\mathbb{P}(k^{n+1})$ as a prevariety given by open affine overing UX. <u>Ex.</u> $X \subseteq \mathbb{P}(1^{n+1}_{k})$ is closed $\Leftrightarrow \exists$ homogen. poly. f_{1} s.t. $X = \{ [x] \mid f_i(x) = 0 \quad \forall i \in \}.$. A closed subset of P(1et) gives us a variety. This type

of variety is called projective variety.
An open subset of a projective variety gives us a variety.
This type of variety is called quosi-projective.
EX. Aⁿ
$$\geq 0.8$$
 is NOT on affine variety if $n \geq 2$.
[Outline: Let $X_i = A^n \notin x \mid x_i = 0.8$. Then $X_i = D_{x_i}$ is open affine.
Let $X - A^n \notin 0.8$.
 $f \in Q_X(X) \Rightarrow f|_X \in Q_X(X_i) = Q_{X_i}(X_i) = k [X_1 \cdots X_n] I^d x_i]$
 $\Rightarrow f|_X \in A^n k [X_1 \cdots X_n] I^d x_i] = k [X_1 \cdots X_n] I^d x_i]$
Since $X_1 \dots \cap X_n$ is dense in X , $f \mapsto f|_{X_1 \dots \cap X_n}$ is injective.
Hence $O_X(X) = k I X_1 \dots X_n I$.
 $f \neq X$ is affine, then the coordinate ring of X is isomorphic to
 $Q_X(X) = k I X_1 \dots X_n$
Notice that, given a reduced f.g. k -algebra $k I_{X_1, \dots, X_m}^{*}$, are
get the unique (up to isomorphism) algebraic set Y and coordinate
ring $k [X_{1, \dots, X_m}] \rightarrow k [X_{1, \dots, X_m}] \longrightarrow Y \propto V(D1)$.
So $X = A^n$, which is a contradiction. (where $N = T$

So $X = A^n$, which is a contradiction. (why?) \blacksquare]