LECTURE 9.

ALIREZA SALEHI GOLSEFIDY

The starting point of lots of topics in ring theory is number theory; to be precise, the study of roots of (monic) polynomials with integer coefficients. For instance, can we talk about primes of $\mathbb{Z}[i]$? How about an arbitrary ring? Do we have unique factorization? etc.

It turns out that (for an arbitrary ring) it is better to work with ideals instead of elements.¹ So we will define a prime ideal instead of a prime element. And later (not in this course) you see that certain rings has "unique factorization" for ideals but does not have unique factorization property.

Definition 1. Let I and J be two ideals of R; then we define

$$IJ := \{\sum_i a_i b_i | a_i \in I, b_i \in J\}.$$

and

$$I + J := \{a + b | a \in I, b \in J\}.$$

Lemma 2. (1) IJ is an ideal of R and $IJ \subseteq I \cap J$. (2) I + J is an ideal and moreover $\langle I \cup J \rangle = I + J$.

Proof. 1. By the definition it is clear that IJ is closed under subtraction. Since $RI \subseteq I$ (resp. $JR \subseteq J$), we have $RIJ \subseteq IJ$ (resp. $IJR \subseteq IJ$). So IJ is an ideal.

Let $x \in IJ$. So there are $a_i \in I$ and $b_i \in J$ such that

$$x = \sum_{i=1}^{m} a_i b_i.$$

Since I (resp. J) is an ideal and $a_i \in I$ (resp. $b_i \in J$), $x = \sum_{i=1}^m a_i b_i \in I$. Hence $x \in I \cap J$.

2. Since I+J+I+J = (I+I)+(J+J) = I+J, -(I+J) = (-I)+(-J) = I+J, $R(I+J) = RI+RJ \subseteq I+J$ and $(I+J)R = IR + JR \subseteq I+J$, I+J is an ideal. Since $I = I+0 \subseteq I+J$ and $J = 0+J \subseteq I+J$, we have $I \cup J \subseteq I+J$. Since I+J is an ideal which contains $I \cup J$, we have that

$$\langle I \cup J \rangle \subseteq I + J.$$

Let $x \in I + J$; then by the definition there are $a \in I$ and $b \in J$ such that x = a + b. We have $a \in I \subseteq \langle I \cup J \rangle$ and $b \in J \subseteq \langle I \cup J \rangle$. Since $\langle I \cup J \rangle$ is an ideal, it is closed under addition. Thus $x = a + b \in \langle I \cup J \rangle$. Thus $I + J \subseteq \langle I \cup J \rangle$, which finished our proof.

Definition 3. An ideal P of R is called a prime ideal if $P \neq R$ and

$$IJ \subseteq P \Rightarrow I \subseteq P \text{ or } J \subseteq P,$$

for any two ideals I and J of R.

Lemma 4. Let R be a commutative ring. An ideal P is prime if and only if

$$ab \in P \Rightarrow a \in P$$
 or $b \in P$.

Date: 1/30/2012.

¹In fact, when we are working with a PID, there is no big difference between working with elements or working with ideals. Because of this over \mathbb{Z} there is no need of working with ideals.

Proof. If $ab \in P$, then $(ab) \subseteq P$. Since R is commutative, this implies that $(a)(b) = (ab) \subseteq P$. Now if P is prime, then either $(a) \subseteq P$ or $(b) \subseteq P$, and we are done.

Let $IJ \subseteq P$ and assume the contrary that $I \not\subseteq P$ and $J \not\subseteq P$. Hence there is $a \in I \setminus P$ and $b \in J \setminus P$. In particular, $ab \in IJ \subseteq P$. By our assumption, either $a \in P$ or $b \in P$, which is a contradiction.

Example 5. $n\mathbb{Z}$ is a prime ideal if and only if either n = 0 or n is prime.

Definition 6. A proper ideal I is called a *maximal* ideal of R if

 $J \triangleleft R$ and $I \subseteq J \Rightarrow J = I$ or J = R.

Example 7. $n\mathbb{Z}$ is a maximal ideal if and only if n is prime.

Lemma 8. Let R be a unital commutative ring. Let I be an ideal in R. Then

- (1) I is a prime ideal if and only if R/I is an integral domain.
- (2) I is a maximal ideal if and only if R/I is a field.

Proof. 1. If I is a prime ideal, then R/I is an integral domain.

$$\begin{aligned} (a+I)(b+I) &= I \quad \Rightarrow \quad ab \in I \\ &\Rightarrow \quad a \in I \text{ or } b \in I \\ &\Rightarrow \quad a+I = I \text{ or } b+I = I. \end{aligned}$$

If R/I is an integral domain, then I is a prime ideal.

a

$$ab \in I \quad \Rightarrow \quad I = ab + I = (a + I)(b + I)$$

$$\Rightarrow \quad a + I = I \text{ or } b + I = I$$

$$\Rightarrow \quad a \in I \text{ or } b \in I.$$

2. If I is a maximal ideal, then R/I is a field. Since we know that R/I is a unital commutative ring, it is enough to show that any non-zero element is a unit.

$$\begin{array}{rcl} + \ I \neq I & \Rightarrow & a \notin I \\ & \Rightarrow & \langle a \rangle + I = R \\ & \Rightarrow & \exists \ b \in R, x \in I, \ ab + x = 1 \\ & \Rightarrow & 1 + I = ab + x + I = ab + I = (a + I)(b + I) \\ & \Rightarrow & a + I \in U(R/I). \end{array}$$

Corollary 9. In a unital commutative ring any maximal ideal is a prime ideal.

Mathematics Dept, University of California, San Diego, CA 92093-0112

 $E\text{-}mail \ address: \verb"golsefidy@ucsd.edu"$