
LECTURE 9.

ALIREZA SALEHI GOLSEFIDY

The starting point of lots of topics in ring theory is number theory; to be precise, the study of roots of
(monic) polynomials with integer coefficients. For instance, can we talk about primes of Z[i]? How about
an arbitrary ring? Do we have unique factorization? etc.

It turns out that (for an arbitrary ring) it is better to work with ideals instead of elements.1 So we will
define a prime ideal instead of a prime element. And later (not in this course) you see that certain rings has
“unique factorization” for ideals but does not have unique factorization property.

Definition 1. Let I and J be two ideals of R; then we define

IJ := {
∑
i

aibi| ai ∈ I, bi ∈ J}.

and
I + J := {a + b| a ∈ I, b ∈ J}.

Lemma 2. (1) IJ is an ideal of R and IJ ⊆ I ∩ J .
(2) I + J is an ideal and moreover 〈I ∪ J〉 = I + J .

Proof. 1. By the definition it is clear that IJ is closed under subtraction. Since RI ⊆ I (resp. JR ⊆ J), we
have RIJ ⊆ IJ (resp. IJR ⊆ IJ). So IJ is an ideal.

Let x ∈ IJ . So there are ai ∈ I and bi ∈ J such that

x =

m∑
i=1

aibi.

Since I (resp. J) is an ideal and ai ∈ I (resp. bi ∈ J), x =
∑m

i=1 aibi ∈ I. Hence x ∈ I ∩ J .

2. Since I+J+I+J = (I+I)+(J+J) = I+J , −(I+J) = (−I)+(−J) = I+J , R(I+J) = RI+RJ ⊆ I+J
and (I + J)R = IR + JR ⊆ I + J , I + J is an ideal. Since I = I + 0 ⊆ I + J and J = 0 + J ⊆ I + J , we
have I ∪ J ⊆ I + J . Since I + J is an ideal which contains I ∪ J , we have that

〈I ∪ J〉 ⊆ I + J.

Let x ∈ I +J ; then by the definition there are a ∈ I and b ∈ J such that x = a+ b. We have a ∈ I ⊆ 〈I ∪J〉
and b ∈ J ⊆ 〈I ∪ J〉. Since 〈I ∪ J〉 is an ideal, it is closed under addition. Thus x = a + b ∈ 〈I ∪ J〉. Thus
I + J ⊆ 〈I ∪ J〉, which finished our proof. �

Definition 3. An ideal P of R is called a prime ideal if P 6= R and

IJ ⊆ P ⇒ I ⊆ P or J ⊆ P,

for any two ideals I and J of R.

Lemma 4. Let R be a commutative ring. An ideal P is prime if and only if

ab ∈ P ⇒ a ∈ P or b ∈ P.
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1In fact, when we are working with a PID, there is no big difference between working with elements or working with ideals.

Because of this over Z there is no need of working with ideals.
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Proof. If ab ∈ P , then (ab) ⊆ P . Since R is commutative, this implies that (a)(b) = (ab) ⊆ P . Now if P is
prime, then either (a) ⊆ P or (b) ⊆ P , and we are done.

Let IJ ⊆ P and assume the contrary that I 6⊆ P and J 6⊆ P . Hence there is a ∈ I \ P and b ∈ J \ P . In
particular, ab ∈ IJ ⊆ P . By our assumption, either a ∈ P or b ∈ P , which is a contradiction. �

Example 5. nZ is a prime ideal if and only if either n = 0 or n is prime.

Definition 6. A proper ideal I is called a maximal ideal of R if

J / R and I ⊆ J ⇒ J = I or J = R.

Example 7. nZ is a maximal ideal if and only if n is prime.

Lemma 8. Let R be a unital commutative ring. Let I be an ideal in R. Then

(1) I is a prime ideal if and only if R/I is an integral domain.
(2) I is a maximal ideal if and only if R/I is a field.

Proof. 1. If I is a prime ideal, then R/I is an integral domain.

(a + I)(b + I) = I ⇒ ab ∈ I
⇒ a ∈ I or b ∈ I
⇒ a + I = I or b + I = I.

If R/I is an integral domain, then I is a prime ideal.

ab ∈ I ⇒ I = ab + I = (a + I)(b + I)
⇒ a + I = I or b + I = I
⇒ a ∈ I or b ∈ I.

2. If I is a maximal ideal, then R/I is a field. Since we know that R/I is a unital commutative ring, it is
enough to show that any non-zero element is a unit.

a + I 6= I ⇒ a 6∈ I
⇒ 〈a〉+ I = R
⇒ ∃ b ∈ R, x ∈ I, ab + x = 1
⇒ 1 + I = ab + x + I = ab + I = (a + I)(b + I)
⇒ a + I ∈ U(R/I).

�

Corollary 9. In a unital commutative ring any maximal ideal is a prime ideal.
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