
LECTURE 8.

ALIREZA SALEHI GOLSEFIDY

Last time we saw the definition of the ideal generated by a given subset X of R. We also saw that if R is a
unital commutative ring then

〈a1, . . . , an〉 = {
n∑

i=1

riai| ri ∈ R}.

The following lemma shows what happens if we drop the unital and commutativity conditions:

Lemma 1. For an arbitrary ring R, the ideal generated by a is

〈a〉 = {
m∑
i=1

riar
′
i + ra + ar′ + na| n ∈ Z, r, r′, ri, r′i ∈ R}.

Proof. It follows from the properties of an ideal. �

Last time we also saw that any ideal of Z is generated by one element.

Definition 2. (1) If X = {a}, then 〈X〉 is often denoted by 〈a〉 and it is called a principal ideal.
(2) A ring R is called a principal ideal ring (PIR) if R is non-zero commutative unital ring all of whose

ideals are principal.
(3) A PIR is called a principal integral domain (PID) if it is also an integral domain

Example 3. Z is a PID.

Lemma 4. Let f : R→ S be an onto ring homomorphism. If I is an ideal of S, then

(1) the preimage of I
f−1(I) := {r ∈ R| f(r) ∈ I}

is an ideal of R.
(2) ker(f) ⊆ f−1(I).
(3) f(f−1(I)) = I.
(4) There is a bijection between the ideals of R which contains ker(f) and the ideals of S:

{I| I / S} f−1

−−→ {J / R| ker(f) ⊆ J}.

Proof. 1. To prove that f−1(I) is an ideal, we have to check the following: f−1(I) − f−1(I) ⊆ f−1(I),
Rf−1(I) ⊆ f−1(I) and f−1(I)R ⊆ f−1(I).

r1, r2 ∈ f−1(I) ⇒ f(r1), f(r2) ∈ I
⇒ f(r1)− f(r2) = f(r1 − r2) ∈ I
⇒ r1 − r2 ∈ f−1(I).

For any r ∈ R and r′ ∈ f−1(I), we have

r′ ∈ f−1(I) ⇒ f(r′) ∈ I
⇒ f(r)f(r′) ∈ I
⇒ f(rr′) ∈ I
⇒ rr′ ∈ f−1(I).
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2. For any ideal I, we have that 0 ∈ I. Hence f−1(0) ⊆ f−1(I) and by the definition ker(f) = f−1(0).

3. By the definition we have f(f−1(I)) = {f(x)| x ∈ f−1(I)} = {f(x)| f(x) ∈ I}, which means

f(f−1(I)) = Im(f) ∩ I.

Since f is onto, we have f(f−1(I)) = I.

4. We have already showed that f−1 defines a function between the mentioned sets. So it is enough to show
that it is injective and surjective.

Injective: We have to show that if f−1(I1) = f−1(I2), then I1 = I2.

Assume to the contrary that I1 6= I2. So either there is x ∈ I1 \ I2 or x ∈ I2 \ I1. Without loss of generality,
let us assume that the former holds. Since f is onto, there is y ∈ R such that f(y) = x. But this means that
y ∈ f−1(I1) \ f−1(I2), which contradicts the assumption that f−1(I1) = f−1(I2).

Surjective: Let J be an ideal of R which contains ker(f). Then we claim that (1) f(J) is an ideal in S and
(2) J = f−1(f(J)). It is clear that (1) and (2) finish the proof of Lemma.

(1) You can prove it using the fact that f is onto.

(2) By the definition, you can check that J ⊆ f−1(f(J)). Now we prove that f−1(f(J)) ⊆ J .

x ∈ f−1(f(J)) ⇒ f(x) ∈ f(J)
⇒ ∃y ∈ J, f(x) = f(y)
⇒ ∃y ∈ J, f(x− y) = 0
⇒ ∃y ∈ J, x− y ∈ ker(f) ⊆ J
⇒ x ∈ J.

�

Corollary 5. Any homomorphic image of a PIR is a PIR.

Lemma 6. Z/nZ is an integral domain if and only if n is either 0 or prime.

Proof. If n is a composite number, then there are 1 < a, b < n such that ab = n. Hence a + nZ and b + nZ
are non-zero and their product is zero. So Z/nZ has zero-divisors.

If p is prime, then p|ab if and only if either p|a or p|b. Hence Z/pZ is a unital (non-trivial) commutative ring
without zero-divisors.

If n = 1, then Z/nZ is the trivial ring which is not an integral domain (by the definition). �

Corollary 7. If n is a composite integer, then Z/nZ is PIR but not PID.

Example 8. Z⊕ Z is a PIR which is not PID. (I leave the proof of it as an exercise.)

There are several rings which are NOT PIR.

Example 9.
⊕∞

i=1 Z is an ideal of
∏∞

i=1 Z and it is not a principal ideal. (I leave the proof of this as an
exercise.)

Lemma 10. The ideal I generated by 2, x in Z[x] is NOT a principal ideal. In particular, Z[x] is an integral
domain which is not a PID.

Proof. Assume to the contrary that there is p(x) ∈ Z[x] such that

〈2, x〉 = 〈p(x)〉.
So there is q(x) ∈ Z[x] such that 2 = p(x)q(x). Since deg(p(x)q(x)) = deg(p(x)) + deg(q(x)), we have that
p(x) = a ∈ Z and moreover a|2. So p(x) = ±1 or p(x) = ±2. However the ideal generated by ±1 is the
whole ring Z[x]. Thus p(x) = ±2. But this is not possible, either, as x 6∈ 〈±2〉. (If x ∈ 〈±2〉, then there is a
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polynomial q(x) ∈ Z[x], such that x = 2q(x). But it is not possible as all the coefficients of 2q(x) are even
and x has an odd coefficient.) �

Example 11. Z[
√

6] is an integral domain and not a PID. (I leave the proof of this as an exercise.) Let
me just remark that later we will see that any PID has unique factorization property. But here 6 = 2× 3 =√

6×
√

6.

Mathematics Dept, University of California, San Diego, CA 92093-0112

E-mail address: golsefidy@ucsd.edu


