LECTURE 8.

ALIREZA SALEHI GOLSEFIDY

Last time we saw the definition of the ideal generated by a given subset X of R. We also saw that if R is a unital commutative ring then

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left\{\sum_{i=1}^{n} r_{i} a_{i} \mid r_{i} \in R\right\} .
$$

The following lemma shows what happens if we drop the unital and commutativity conditions:
Lemma 1. For an arbitrary ring R, the ideal generated by a is

$$
\langle a\rangle=\left\{\sum_{i=1}^{m} r_{i} a r_{i}^{\prime}+r a+a r^{\prime}+n a \mid n \in \mathbb{Z}, r, r^{\prime}, r_{i}, r_{i}^{\prime} \in R\right\} .
$$

Proof. It follows from the properties of an ideal.
Last time we also saw that any ideal of \mathbb{Z} is generated by one element.
Definition 2. (1) If $X=\{a\}$, then $\langle X\rangle$ is often denoted by $\langle a\rangle$ and it is called a principal ideal.
(2) A ring R is called a principal ideal ring (PIR) if R is non-zero commutative unital ring all of whose ideals are principal.
(3) A PIR is called a principal integral domain (PID) if it is also an integral domain

Example 3. \mathbb{Z} is a PID.
Lemma 4. Let $f: R \rightarrow S$ be an onto ring homomorphism. If I is an ideal of S, then
(1) the preimage of I

$$
f^{-1}(I):=\{r \in R \mid f(r) \in I\}
$$

is an ideal of R.
(2) $\operatorname{ker}(f) \subseteq f^{-1}(I)$.
(3) $f\left(f^{-1}(I)\right)=I$.
(4) There is a bijection between the ideals of R which contains $\operatorname{ker}(f)$ and the ideals of S :

$$
\{I \mid I \triangleleft S\} \xrightarrow{f^{-1}}\{J \triangleleft R \mid \operatorname{ker}(f) \subseteq J\} .
$$

Proof. 1. To prove that $f^{-1}(I)$ is an ideal, we have to check the following: $f^{-1}(I)-f^{-1}(I) \subseteq f^{-1}(I)$, $R f^{-1}(I) \subseteq f^{-1}(I)$ and $f^{-1}(I) R \subseteq f^{-1}(I)$.

$$
\begin{aligned}
r_{1}, r_{2} \in f^{-1}(I) & \Rightarrow f\left(r_{1}\right), f\left(r_{2}\right) \in I \\
& \Rightarrow f\left(r_{1}\right)-f\left(r_{2}\right)=f\left(r_{1}-r_{2}\right) \in I \\
& \Rightarrow r_{1}-r_{2} \in f^{-1}(I) .
\end{aligned}
$$

For any $r \in R$ and $r^{\prime} \in f^{-1}(I)$, we have

$$
\begin{aligned}
r^{\prime} \in f^{-1}(I) & \Rightarrow f\left(r^{\prime}\right) \in I \\
& \Rightarrow f(r) f\left(r^{\prime}\right) \in I \\
& \Rightarrow f\left(r r^{\prime}\right) \in I \\
& \Rightarrow r r^{\prime} \in f^{-1}(I) .
\end{aligned}
$$

2. For any ideal I, we have that $0 \in I$. Hence $f^{-1}(0) \subseteq f^{-1}(I)$ and by the definition $\operatorname{ker}(f)=f^{-1}(0)$.
3. By the definition we have $f\left(f^{-1}(I)\right)=\left\{f(x) \mid x \in f^{-1}(I)\right\}=\{f(x) \mid f(x) \in I\}$, which means

$$
f\left(f^{-1}(I)\right)=\operatorname{Im}(f) \cap I
$$

Since f is onto, we have $f\left(f^{-1}(I)\right)=I$.
4. We have already showed that f^{-1} defines a function between the mentioned sets. So it is enough to show that it is injective and surjective.

Injective: We have to show that if $f^{-1}\left(I_{1}\right)=f^{-1}\left(I_{2}\right)$, then $I_{1}=I_{2}$.
Assume to the contrary that $I_{1} \neq I_{2}$. So either there is $x \in I_{1} \backslash I_{2}$ or $x \in I_{2} \backslash I_{1}$. Without loss of generality, let us assume that the former holds. Since f is onto, there is $y \in R$ such that $f(y)=x$. But this means that $y \in f^{-1}\left(I_{1}\right) \backslash f^{-1}\left(I_{2}\right)$, which contradicts the assumption that $f^{-1}\left(I_{1}\right)=f^{-1}\left(I_{2}\right)$.
Surjective: Let J be an ideal of R which contains $\operatorname{ker}(f)$. Then we claim that (1) $f(J)$ is an ideal in S and (2) $J=f^{-1}(f(J))$. It is clear that (1) and (2) finish the proof of Lemma.
(1) You can prove it using the fact that f is onto.
(2) By the definition, you can check that $J \subseteq f^{-1}(f(J))$. Now we prove that $f^{-1}(f(J)) \subseteq J$.

$$
\begin{array}{rlr}
x \in f^{-1}(f(J)) & \Rightarrow & f(x) \in f(J) \\
& \Rightarrow & \exists y \in J, f(x)=f(y) \\
& \Rightarrow & \exists y \in J, f(x-y)=0 \\
& \Rightarrow & \exists y \in J, x-y \in \operatorname{ker}(f) \subseteq J \\
& \Rightarrow & x \in J .
\end{array}
$$

Corollary 5. Any homomorphic image of a PIR is a PIR.
Lemma 6. $\mathbb{Z} / n \mathbb{Z}$ is an integral domain if and only if n is either 0 or prime.
Proof. If n is a composite number, then there are $1<a, b<n$ such that $a b=n$. Hence $a+n \mathbb{Z}$ and $b+n \mathbb{Z}$ are non-zero and their product is zero. So $\mathbb{Z} / n \mathbb{Z}$ has zero-divisors.

If p is prime, then $p \mid a b$ if and only if either $p \mid a$ or $p \mid b$. Hence $\mathbb{Z} / p \mathbb{Z}$ is a unital (non-trivial) commutative ring without zero-divisors.
If $n=1$, then $\mathbb{Z} / n \mathbb{Z}$ is the trivial ring which is not an integral domain (by the definition).
Corollary 7. If n is a composite integer, then $\mathbb{Z} / n \mathbb{Z}$ is PIR but not PID.
Example 8. $\mathbb{Z} \oplus \mathbb{Z}$ is a PIR which is not PID. (I leave the proof of it as an exercise.)
There are several rings which are NOT PIR.
Example 9. $\bigoplus_{i=1}^{\infty} \mathbb{Z}$ is an ideal of $\prod_{i=1}^{\infty} \mathbb{Z}$ and it is not a principal ideal. (I leave the proof of this as an exercise.)

Lemma 10. The ideal I generated by $2, x$ in $\mathbb{Z}[x]$ is NOT a principal ideal. In particular, $\mathbb{Z}[x]$ is an integral domain which is not a PID.

Proof. Assume to the contrary that there is $p(x) \in \mathbb{Z}[x]$ such that

$$
\langle 2, x\rangle=\langle p(x)\rangle .
$$

So there is $q(x) \in \mathbb{Z}[x]$ such that $2=p(x) q(x)$. Since $\operatorname{deg}(p(x) q(x))=\operatorname{deg}(p(x))+\operatorname{deg}(q(x))$, we have that $p(x)=a \in \mathbb{Z}$ and moreover $a \mid 2$. So $p(x)= \pm 1$ or $p(x)= \pm 2$. However the ideal generated by ± 1 is the whole ring $\mathbb{Z}[x]$. Thus $p(x)= \pm 2$. But this is not possible, either, as $x \notin\langle \pm 2\rangle$. (If $x \in\langle \pm 2\rangle$, then there is a
polynomial $q(x) \in \mathbb{Z}[x]$, such that $x=2 q(x)$. But it is not possible as all the coefficients of $2 q(x)$ are even and x has an odd coefficient.)

Example 11. $\mathbb{Z}[\sqrt{6}]$ is an integral domain and not a PID. (I leave the proof of this as an exercise.) Let me just remark that later we will see that any PID has unique factorization property. But here $6=2 \times 3=$ $\sqrt{6} \times \sqrt{6}$.

Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: golsefidy@ucsd.edu

