LECTURE 7.

ALIREZA SALEHI GOLSEFIDY

Last time we define the factor ring R/I, where I is an ideal of R. We essentially defined the ring structure on R/I such that:

Corollary 1. The map $f: R \to R/I$, f(x) := x + I is a ring homomorphism and ker(f) = I.

Remark 2. Corollary 1 shows that there is a bijection between the set of all the ideals of R and the set of all the kernel of homomorphisms from R to any other ring.

Let us recall the following fact from group theory:

Lemma 3. Let I be a subgroup of the abelian group R. Then

$$x_1 + I = x_2 + I \Leftrightarrow x_1 - x_2 \in I.$$

Proof. Since $0 \in I$, $x_1 = x_1 + 0 \in x_1 + I = x_2 + I$. Hence there is $a \in I$ such that $x_1 = x_2 + a$. Thus $x_1 - x_2 = a \in I$.

On the other hand, if $x_1 - x_2 = a \in I$, then $x_1 + I = (x_2 + a) + I$. Since I is a group and $a \in I$, we have that a + I = I. Therefore $x_2 + a + I = x_2 + I$, which finishes our proof.

Theorem 4. Let $f : R \to S$ be a ring homomorphism. Then

$$\overline{f}: R/\ker(f) \to \operatorname{Im}(f), \ \overline{f}(x + \ker(f)) := f(x)$$

is a ring isomorphism.

Proof. Well-defined: We have to show that if $x + \ker(f) = x' + \ker(f)$, then f(x) = f(x').

$$\begin{aligned} x + \ker(f) &= x' + \ker(f) &\Rightarrow x - x' \in \ker(f) \\ &\Rightarrow f(x - x') = 0 \\ &\Rightarrow f(x) = f(x'). \end{aligned}$$

Injective: We have to show that if $\overline{f}(x + \ker(f)) = \overline{f}(x' + \ker(f))$, then $x + \ker(f) = x' + \ker(f)$.

$$\begin{split} \overline{f}(x + \ker(f)) &= \overline{f}(x' + \ker(f)) &\Rightarrow f(x) = f(x') \\ &\Rightarrow f(x - x') = 0 \\ &\Rightarrow x - x' \in \ker(f) \\ &\Rightarrow x + \ker(f) = x' + \ker(f). \end{split}$$

Surjective: We have to show $\operatorname{Im}(\overline{f}) = \operatorname{Im}(f)$.

Let $y \in \text{Im}(f)$. Then by the definition, there is $x \in R$ such that y = f(x). Hence $y = \overline{f}(x + \text{ker}(f)) \in \text{Im}(\overline{f})$. **Homomorphism:** We have to show that \overline{f} preserves the additive and the multiplicative structures. We just show the multiplicative case. The other one is similar.

Date: 1/25/2012.

$$\overline{f}((x + \ker(f))(y + \ker(f))) = \overline{f}((xy) + \ker(f))$$

$$= f(xy)$$

$$= f(x)f(y)$$

$$= \overline{f}(x + \ker(f))\overline{f}(y + \ker(f)).$$

Definition 5. A ring S is called a homomorphic image of R if there is an onto ring homomorphism from R to S.

Corollary 6. Any homomorphic image of R is isomorphic to a ring factor of R.

Example 7. Any ideal of \mathbb{Z} is of the form $n\mathbb{Z}$ for some non-negative integer n. In particular, any homomorphic image of \mathbb{Z} is isomorphic to either \mathbb{Z} , $\{0\}$ or $\mathbb{Z}/n\mathbb{Z}$ for some positive integer n.

Definition 8. Let $X \subseteq R$. The ideal generated by X is the smallest ideal of R which contains X. It is denoted by $\langle X \rangle$. Since the intersection of a family of ideals is again an ideal, one can see that

$$\langle X \rangle = \bigcap_{I \triangleleft R, \ X \subseteq I} I$$

Lemma 9. Let R be a unital commutative ring and $X = \{a_1, \ldots, a_n\} \subseteq R$. Then

$$\langle X \rangle = \langle a_1, \dots, a_n \rangle = \{ \sum_{i=1}^n r_i a_i | \forall i, r_i \in R \}$$

Proof. X is a subset of I: Let $I = \{\sum_{i=1}^{n} r_i a_i | \forall i, r_i \in R\}$. Since R is a unital ring, for any $i, a_i = 1 \cdot a_i \in I$. So $X \subseteq I$.

I is an ideal: We have to show (1) if $a, b \in I$, then $a - b \in I$, (2) if $a \in I$ and $r \in R$, then $ra \in I$. (Since R is commutative, we do not need to check if $ar \in I$.)

(1) $\sum_{i=1}^{n} r_i a_i - \sum_{i=1}^{n} r'_i a_i = \sum_{i=1}^{n} (r_i - r'_i) a_i \in I.$ (2) $r \cdot \sum_{i=1}^{n} r_i a_i = \sum_{i=1}^{n} (rr_i) a.$

I is the smallest ideal which contains all the a_i 's: Let *J* be an ideal of *R* and $X \subseteq J$. Then for any $r_i \in R$ we have that $r_i a_i \in J$ since *J* is an ideal. Thus $\sum_{i=1}^n r_i a_i \in J$ since *J* is closed under addition. Hence $I \subseteq J$.

Example 10. Any ideal in \mathbb{Z} is generated by one element: $n\mathbb{Z} = \langle n \rangle$.

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112

 $E\text{-}mail \ address: \ \texttt{golsefidy@ucsd.edu}$