## LECTURE 5.

ALIREZA SALEHI GOLSEFIDY

Lemma 1. Let $I$ be an ideal of $R$. Consider the abelian additive group $R / I$. Then the following is $a$ well-defined operation

$$
(a+I) \cdot(b+I):=(a b)+I
$$

Moreover $(R / I,+, \cdot)$ is a ring.
Proof. Well-defined: we have to show that if $a+I=a^{\prime}+I$ and $b+I=b^{\prime}+I$, then $(a b)+I=\left(a^{\prime} b^{\prime}\right)+I$. It is equivalent to say that if $a-a^{\prime} \in I$ and $b-b^{\prime} \in I$, then $a b-a^{\prime} b^{\prime} \in I$ :

$$
a b-a^{\prime} b^{\prime}=\left(a b-a b^{\prime}\right)+\left(a b^{\prime}-a^{\prime} b^{\prime}\right)=a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime} \in R I+I R \subseteq I .
$$

It is straightforward to check that it is a ring.
Corollary 2. Let $f: R \rightarrow R / I, f(a):=a+I$. Then $f$ is a ring homomorphism and $\operatorname{ker}(f)=I$.
Proof. It is a direct corollary of Lemma 1 that $f$ is a ring homomorphism. We also have

$$
\operatorname{ker}(f):=\{a \in R \mid f(a)=0\}=\{a \in R \mid a+I=0+I\}=I
$$

Corollary 3. There is a correspondence between ideals and kernels of ring homomorphisms.
Definition 4. A ring homomorphism $f: R \rightarrow S$ is called an isomorphism if it is a bijection.
Lemma 5. If $f: R \rightarrow S$ is a ring isomorphism, then $f^{(-1)}: S \rightarrow R$ is also an isomorphism.
Proof. Since $f^{(-1)}$ is clearly a bijection, it is enough to prove that it is a ring homomorphism:

$$
f\left(f^{(-1)}(x)+f^{(-1)}(y)\right)=f\left(f^{(-1)}(x)\right)+f\left(f^{(-1)}(y)\right)=x+y
$$

and

$$
f\left(f^{(-1)}(x) f^{(-1)}(y)\right)=f\left(f^{(-1)}(x)\right) f\left(f^{(-1)}(y)\right)=x y
$$

Hence

$$
f^{(-1)}(x)+f^{(-1)}(y)=f^{(-1)}(x+y) \text { and } f^{(-1)}(x) f^{(-1)}(y)=f^{(-1)}(x y) .
$$

Lemma 6. $f \in \operatorname{hom}(R, S)$ is an isomorphism if and only if $\operatorname{Im}(f)=S$ and $\operatorname{ker}(f)=\{0\}$.
Proof. It is enough to show that a homomorphism is injective if and only if $\operatorname{ker}(f)=\{0\}$.
If $x \in \operatorname{ker}(f)$, then $f(x)=f(0)$. So if $f$ is injective, then $x=0$.
If $f(x)=f(y)$, then $f(x-y)=0$, which means $x-y \in \operatorname{ker}(f)$. So if $\operatorname{ker}(f)=\{0\}$, then $x-y=0$, i.e. $x=y$.
Hence $f$ is injective.

