LECTURE 5.

ALIREZA SALEHI GOLSEFIDY

Lemma 1. Let I be an ideal of R. Consider the abelian additive group R/I. Then the following is a well-defined operation

$$(a+I) \cdot (b+I) := (ab) + I.$$

Moreover $(R/I, +, \cdot)$ is a ring.

Proof. Well-defined: we have to show that if a + I = a' + I and b + I = b' + I, then (ab) + I = (a'b') + I. It is equivalent to say that if $a - a' \in I$ and $b - b' \in I$, then $ab - a'b' \in I$:

$$ab - a'b' = (ab - ab') + (ab' - a'b') = a(b - b') + (a - a')b' \in RI + IR \subseteq I.$$

It is straightforward to check that it is a ring.

Corollary 2. Let $f: R \to R/I$, f(a) := a + I. Then f is a ring homomorphism and ker(f) = I.

Proof. It is a direct corollary of Lemma 1 that f is a ring homomorphism. We also have $\ker(f) := \{a \in R | f(a) = 0\} = \{a \in R | a + I = 0 + I\} = I.$

Corollary 3. There is a correspondence between ideals and kernels of ring homomorphisms. **Definition 4.** A ring homomorphism $f: R \to S$ is called an isomorphism if it is a bijection. **Lemma 5.** If $f: R \to S$ is a ring isomorphism, then $f^{(-1)}: S \to R$ is also an isomorphism.

Proof. Since $f^{(-1)}$ is clearly a bijection, it is enough to prove that it is a ring homomorphism:

$$f(f^{(-1)}(x) + f^{(-1)}(y)) = f(f^{(-1)}(x)) + f(f^{(-1)}(y)) = x + y$$

and

$$f(f^{(-1)}(x)f^{(-1)}(y)) = f(f^{(-1)}(x))f(f^{(-1)}(y)) = xy.$$

Hence

$$f^{(-1)}(x) + f^{(-1)}(y) = f^{(-1)}(x+y)$$
 and $f^{(-1)}(x)f^{(-1)}(y) = f^{(-1)}(xy)$

Lemma 6. $f \in \text{hom}(R, S)$ is an isomorphism if and only if Im(f) = S and $\text{ker}(f) = \{0\}$.

Proof. It is enough to show that a homomorphism is injective if and only if $ker(f) = \{0\}$.

If $x \in \text{ker}(f)$, then f(x) = f(0). So if f is injective, then x = 0.

If f(x) = f(y), then f(x - y) = 0, which means $x - y \in \text{ker}(f)$. So if $\text{ker}(f) = \{0\}$, then x - y = 0, i.e. x = y. Hence f is injective.

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112 *E-mail address:* golsefidy@ucsd.edu Date: 1/23/2012.