LECTURE 5.

ALIREZA SALEHI GOLSEFIDY

Last time we defined the characteristic of a ring.
Lemma 1. Let R be an integral domain. Then $\operatorname{char}(R)$ is either a prime number or zero.
Proof. If not, then $\operatorname{char}(R)=\operatorname{ord}(1)$ is a composite positive integer. Let $\operatorname{char}(R)=a b$ where $1<a, b<$ $\operatorname{char}(R)$. Then $(a 1)(b 1)=(a b) 1=0$ and $a 1 \neq 0$ and $b 1 \neq 0$, which contradicts the fact that R has no zero-divisor.

Remark 2. As I said earlier, whenever one would like to study a new structure in mathematics, one has to consider the maps from between these objects which preserve their structure. Such maps are called homomorphism.

Definition 3. Let R_{1} and R_{2} be two rings. A function $f: R_{1} \rightarrow R_{2}$ is called a (ring) homomorphism if
(1) f is an additive group homomorphism, i.e. $f(a+b)=f(a)+f(b)$ and $f(-a)=-f(a)$.
(2) $f(a b)=f(a) f(b)$.

Remark 4. It is enough to check that $f(a-b)=f(a)-f(b)$ and $f(a b)=f(a) f(b)$.
Example 5. (1) For any positive integer $n, f: \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}, f(x):=x+n \mathbb{Z}$ is a ring homomorphism. (2) Let R be a unital ring. Then $f: \mathbb{Z} \rightarrow R, f(n)=n 1_{R}$ is ring homomorphism.

As you have seen in group theory, one can associate two new objects to a homomorphism: its image and its kernel.

Definition 6. Let $f: R_{1} \rightarrow R_{2}$ be a ring homomorphism. Then the image of f is

$$
\operatorname{Im}(f):=\left\{f(a) \mid a \in R_{1}\right\}
$$

and its kernel is

$$
\operatorname{ker}(f):=\left\{a \in R_{1} \mid f(a)=0\right\} .
$$

Lemma 7. Let $f: R_{1} \rightarrow R_{2}$ be a ring homomorphism. Then
(1) $\operatorname{Im}(f)$ is a subring of R_{2}.
(2) $\operatorname{ker}(f)$ is a subring of R_{1}. Moreover for any $c \in R_{1}$ and b in $\operatorname{ker}(f)$, we have that $c b \in \operatorname{ker}(f)$ and $b c \in \operatorname{ker}(f)$, i.e. $R_{1} \operatorname{ker}(f)=\operatorname{ker}(f) R_{1}=\operatorname{ker}(f)$.

Proof. 1. We have to check if $\operatorname{Im}(f)$ is closed under subtraction and multiplication: $f(a)-f(b)=f(a-b) \in$ $\operatorname{Im}(f)$ and $f(a) f(b)=f(a b) \in \operatorname{Im}(f)$.
2. Let $a, b \in \operatorname{ker}(f)$; then $f(a-b)=f(a)-f(b)=0-0=0$. So $a-b \in \operatorname{ker}(f)$. Let $c \in R_{1}$ and $b \in \operatorname{ker}(f)$; then $f(c b)=f(c) f(b)=f(c) \cdot 0=0$ and $f(b c)=f(b) f(c)=0 \cdot f(c)=0$. Hence $c b, b c \in \operatorname{ker}(f)$.

It is a motivation to define the notion of an ideal:
Definition 8. A subset I of a ring R is called an it ideal of R if

[^0](1) I is a subring.
(2) $R I=I R=I$, i.e. for any $r \in R$ and $a \in I$ we have $r a \in I$ and $a r \in I$.

Corollary 9. Let $f: R_{1} \rightarrow R_{2}$ be a ring homomorphism; then $\operatorname{ker}(f)$ is an ideal in R_{1}.
Remark 10. Let $f: R_{1} \rightarrow R_{2}$ be a ring homomorphism; then the image of f is NOT necessarily an ideal of R_{2}.

Example 11. (1) $\{0\}$ and R are ideals of R.
(2) All the ideals of \mathbb{Z} are of the form $n \mathbb{Z}$. (Any subring of \mathbb{Z} is an ideal, too!)
(3) If I is an ideal of R and $I \cap U(R) \neq \varnothing$, then $I=R$.
(4) If K is a division ring, then its only ideals are $\{0\}$ and R.

Lemma 12. (1) Intersection of a family of ideals is again an ideal. (But it is NOT true for union.)
(2) Product of (finitely many) ideals is again an ideal.

Proof. I leave it as an exercise.
As in group theory, we would like to prove a statement like this

$$
R_{1} / \operatorname{ker}(f) \simeq \operatorname{Im}(f)
$$

So we need to say what we mean by $R_{1} / \operatorname{ker}(f)$:
Let I be an ideal of R. Then R / I is also an abelian group. Let's define the following multiplication on this group:

$$
(a+I) \cdot(b+I):=(a b)+I .
$$

Lemma 13. (1) The above map is well-defined.
(2) $(R / I,+, \cdot)$ is a ring.

We will prove it in the next lecture.
Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: golsefidy@ucsd.edu

[^0]: Date: 1/20/2012.

