LECTURE 5.

ALIREZA SALEHI GOLSEFIDY

Last time we defined the characteristic of a ring.

Lemma 1. Let R be an integral domain. Then char(R) is either a prime number or zero.

Proof. If not, then char(R) = ord(1) is a composite positive integer. Let char(R) = ab where 1 < a, b < char(R). Then (a1)(b1) = (ab)1 = 0 and $a1 \neq 0$ and $b1 \neq 0$, which contradicts the fact that R has no zero-divisor.

Remark 2. As I said earlier, whenever one would like to study a new structure in mathematics, one has to consider the maps from between these objects which preserve their structure. Such maps are called *homomorphism*.

Definition 3. Let R_1 and R_2 be two rings. A function $f: R_1 \to R_2$ is called a (ring) homomorphism if

(1) f is an additive group homomorphism, i.e. f(a+b) = f(a) + f(b) and f(-a) = -f(a). (2) f(ab) = f(a)f(b).

Remark 4. It is enough to check that f(a - b) = f(a) - f(b) and f(ab) = f(a)f(b).

Example 5. (1) For any positive integer $n, f : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, f(x) := x + n\mathbb{Z}$ is a ring homomorphism. (2) Let R be a unital ring. Then $f : \mathbb{Z} \to R$, $f(n) = n1_R$ is ring homomorphism.

As you have seen in group theory, one can associate two new objects to a homomorphism: its image and its kernel.

Definition 6. Let $f: R_1 \to R_2$ be a ring homomorphism. Then the image of f is

$$\operatorname{Im}(f) := \{ f(a) \mid a \in R_1 \}$$

and its kernel is

$$\ker(f) := \{ a \in R_1 | f(a) = 0 \}$$

Lemma 7. Let $f : R_1 \to R_2$ be a ring homomorphism. Then

- (1) $\operatorname{Im}(f)$ is a subring of R_2 .
- (2) ker(f) is a subring of R_1 . Moreover for any $c \in R_1$ and b in ker(f), we have that $cb \in \text{ker}(f)$ and $bc \in \text{ker}(f)$, i.e. $R_1 \text{ker}(f) = \text{ker}(f)R_1 = \text{ker}(f)$.

Proof. 1. We have to check if Im(f) is closed under subtraction and multiplication: $f(a) - f(b) = f(a-b) \in \text{Im}(f)$ and $f(a)f(b) = f(ab) \in \text{Im}(f)$.

2. Let $a, b \in \text{ker}(f)$; then f(a - b) = f(a) - f(b) = 0 - 0 = 0. So $a - b \in \text{ker}(f)$. Let $c \in R_1$ and $b \in \text{ker}(f)$; then $f(cb) = f(c)f(b) = f(c) \cdot 0 = 0$ and $f(bc) = f(b)f(c) = 0 \cdot f(c) = 0$. Hence $cb, bc \in \text{ker}(f)$.

It is a motivation to define the notion of an ideal:

Definition 8. A subset I of a ring R is called an it ideal of R if

Date: 1/20/2012.

ALIREZA SALEHI GOLSEFIDY

(1) I is a subring.

(2) RI = IR = I, i.e. for any $r \in R$ and $a \in I$ we have $ra \in I$ and $ar \in I$.

Corollary 9. Let $f : R_1 \to R_2$ be a ring homomorphism; then ker(f) is an ideal in R_1 .

Remark 10. Let $f : R_1 \to R_2$ be a ring homomorphism; then the image of f is NOT necessarily an ideal of R_2 .

Example 11. (1) $\{0\}$ and R are ideals of R.

(2) All the ideals of \mathbb{Z} are of the form $n\mathbb{Z}$. (Any subring of \mathbb{Z} is an ideal, too!)

- (3) If I is an ideal of R and $I \cap U(R) \neq \emptyset$, then I = R.
- (4) If K is a division ring, then its only ideals are $\{0\}$ and R.

Lemma 12. (1) Intersection of a family of ideals is again an ideal. (But it is NOT true for union.)
(2) Product of (finitely many) ideals is again an ideal.

Proof. I leave it as an exercise.

As in group theory, we would like to prove a statement like this

 $R_1/\ker(f) \simeq \operatorname{Im}(f).$

So we need to say what we mean by $R_1/\ker(f)$:

Let I be an ideal of R. Then R/I is also an abelian group. Let's define the following multiplication on this group:

$$(a+I) \cdot (b+I) := (ab) + I$$

Lemma 13. (1) The above map is well-defined. (2) $(R/I, +, \cdot)$ is a ring.

We will prove it in the next lecture.

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112

 $E\text{-}mail \ address: \verb"golsefidy@ucsd.edu"$

 $\mathbf{2}$