
LECTURE 5.

ALIREZA SALEHI GOLSEFIDY

Last time we defined the characteristic of a ring.

Lemma 1. Let R be an integral domain. Then char(R) is either a prime number or zero.

Proof. If not, then char(R) = ord(1) is a composite positive integer. Let char(R) = ab where 1 < a, b <
char(R). Then (a1)(b1) = (ab)1 = 0 and a1 6= 0 and b1 6= 0, which contradicts the fact that R has no
zero-divisor. �

Remark 2. As I said earlier, whenever one would like to study a new structure in mathematics, one has
to consider the maps from between these objects which preserve their structure. Such maps are called
homomorphism.

Definition 3. Let R1 and R2 be two rings. A function f : R1 → R2 is called a (ring) homomorphism if

(1) f is an additive group homomorphism, i.e. f(a + b) = f(a) + f(b) and f(−a) = −f(a).
(2) f(ab) = f(a)f(b).

Remark 4. It is enough to check that f(a− b) = f(a)− f(b) and f(ab) = f(a)f(b).

Example 5. (1) For any positive integer n, f : Z→ Z/nZ, f(x) := x + nZ is a ring homomorphism.
(2) Let R be a unital ring. Then f : Z→ R, f(n) = n1R is ring homomorphism.

As you have seen in group theory, one can associate two new objects to a homomorphism: its image and its
kernel.

Definition 6. Let f : R1 → R2 be a ring homomorphism. Then the image of f is

Im(f) := {f(a)| a ∈ R1}
and its kernel is

ker(f) := {a ∈ R1| f(a) = 0}.

Lemma 7. Let f : R1 → R2 be a ring homomorphism. Then

(1) Im(f) is a subring of R2.
(2) ker(f) is a subring of R1. Moreover for any c ∈ R1 and b in ker(f), we have that cb ∈ ker(f) and

bc ∈ ker(f), i.e. R1 ker(f) = ker(f)R1 = ker(f).

Proof. 1. We have to check if Im(f) is closed under subtraction and multiplication: f(a)− f(b) = f(a− b) ∈
Im(f) and f(a)f(b) = f(ab) ∈ Im(f).

2. Let a, b ∈ ker(f); then f(a− b) = f(a)− f(b) = 0− 0 = 0. So a− b ∈ ker(f). Let c ∈ R1 and b ∈ ker(f);
then f(cb) = f(c)f(b) = f(c) · 0 = 0 and f(bc) = f(b)f(c) = 0 · f(c) = 0. Hence cb, bc ∈ ker(f). �

It is a motivation to define the notion of an ideal:

Definition 8. A subset I of a ring R is called an it ideal of R if
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(1) I is a subring.
(2) RI = IR = I, i.e. for any r ∈ R and a ∈ I we have ra ∈ I and ar ∈ I.

Corollary 9. Let f : R1 → R2 be a ring homomorphism; then ker(f) is an ideal in R1.

Remark 10. Let f : R1 → R2 be a ring homomorphism; then the image of f is NOT necessarily an ideal
of R2.

Example 11. (1) {0} and R are ideals of R.
(2) All the ideals of Z are of the form nZ. (Any subring of Z is an ideal, too!)
(3) If I is an ideal of R and I ∩ U(R) 6= ∅, then I = R.
(4) If K is a division ring, then its only ideals are {0} and R.

Lemma 12. (1) Intersection of a family of ideals is again an ideal. (But it is NOT true for union.)
(2) Product of (finitely many) ideals is again an ideal.

Proof. I leave it as an exercise. �

As in group theory, we would like to prove a statement like this

R1/ ker(f) ' Im(f).

So we need to say what we mean by R1/ ker(f):

Let I be an ideal of R. Then R/I is also an abelian group. Let’s define the following multiplication on this
group:

(a + I) · (b + I) := (ab) + I.

Lemma 13. (1) The above map is well-defined.
(2) (R/I,+, ·) is a ring.

We will prove it in the next lecture.
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