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1 Elementary Groups

Definition 1 A subgroup Γ of PSL(2,R) is called elementary if there exists
some x such that Γx, the Γ orbit of x, is finite.

Clearly, any subgroup in which all elements share some fixed point is
elementary.

We’ve noted how an element of PSL(2,R) takes elements from H to
H. However, it follows directly from the closure of the real numbers that
PSL(2,R) takes elements from R to R. If we look at the limiting behav-
ior when dealing with ∞, we can say that PSL(2,R) takes elements from
R
⋃
{∞} to R

⋃
{∞}.

In other words, orbits stay in R
⋃
{∞} or in H, though in either case the

group acts on the closure of H.

Definition 2 If g, h are elements of a group, then the commutator is the
element ghg−1h−1, denoted by [g, h].

Clearly, if g and h commute, the commutator is just the identity. We will
use the commutator as a tool to prove various theorems, and it is a critical
concept in Jörgensen’s inequality.

1.1 Characterization of Elementary Groups

Lemma 1 Let G be a subgroup of PSL(2,R) containing besides the identity
only elliptic elements. Then all elements of G have the same fixed point, and
the subgroup is abelian, cyclic, and elementary.

We recall that we can always conjugate all elements of G so that some
element in the subgroup ”behaves nicely”. So if we look at the unit disc
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model, where elements of PSL(2,R) take the form

[
a b
b̄ ā

]
, we can conjugate

G so that gεG is expressed by the matrix

[
u 0
0 ū

]
(i.e. it fixes the origin).

Then take any other hεG so that h =

[
a c
c̄ ā

]
.

We want to show that g and h have the same fixed points, so two impor-
tant assumptions are that g 6= Id and g 6= h.

We first find the commutator matrix to be [g, h] =

[
|a|2 − u2|c|2 −ac+ acu2

−āc̄+ āc̄ū2 |a|2 − ū2|c|2
]
,

so that tr[g, h] = 2|a|2 − |c|2(u2 + ū2) = 2|a|2 − |c|2(−4Im(u)2 + 2) =
2(|a|2 − |c|2) + |c|24Im(u)2 = 2 + |c|24Im(u)2.

Since g contains no hyperbolic elements, this value can be no greater than
2, which means that either |c| = 0 or Im(u) = 0. In the latter case, g is just
the identity, which contradicts our assumptions, so |c| = 0, which entails that
h also fixes the origin. Since this works for arbitrary h, then all elements in
G share g’s fixed point, and so all elements have the same fixed points, which
we know entails G is abelian and cyclic, and since one point has an orbit of
order 1, then G is elementary.

We can now state a theorem which describes all elementary Fuchsian
groups.

Theorem 1 Any elementary Fuchsian group is either cyclic or conjugate in
PSL(2,R) to a group generated by g(z) = kz(k > 1), h(z) = −1/z.

Consider an elementary Fuchsian group Γ. We prove this theorem con-
sidering three possible cases: Γ has an orbit of order 1, Γ has an orbit of
order 2 in R

⋃
{∞}, or any other situation.

Case 1 This is equivalent to saying that all elements of Γ share 1 fixed
point in the closure of H. If this point is in H, then all elements in Γ are
elliptic (as parabolic and hyperbolic elements have no fixed points in H), so
our lemma shows us Γ is cyclic.

If the fixed point is in R
⋃
{∞}, then all elements are either parabolic or

hyperbolic. We wish to show they must all be of the same type.
Assume the contrary, and conjugate Γ so that the fixed point is∞. Then

if we pick a hyperbolic element g and a parabolic element h, g(z) = λz,
h(z) = z + k for λ > 1, k 6= 0. If we couldn’t choose such a k, there
would be no non-identity parabolic elements, and for the same reason we can
choose a non-zero λ, and take the inverse if necessary to satisfy the inequality
condition. Then the element g−nhgn(z) = z + λ−nk.
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Then ‖g−nhgn‖ = (22+(λ−nk)2)1/2, which is bounded, since λ > 1. Then
we can extract a converging subsequence of distinct terms which contradicts
discreteness. So there can only be parabolic or hyperbolic elements.

If there are only parabolic elements, then all elements of Γ have the same
fixed points and so Γ is cyclic. If all elements are hyperbolic, we wish to
show that the second fixed point is also shared by all of them, which once
again would imply Γ is cyclic.

Conjugate so that some non-identity element f is represented by the

matrix

[
λ 0
0 1/λ

]
, which fixes 0 and ∞, and some other parabolic element g

is represented by

[
a b
c d

]
. If we want g to fix only 0, then b = 0, c 6= 0, a 6= 0,

and d = 1/a, so that [f, g] =

[
1 0

c/a(1/λ2 − 1) 1

]
We know c 6= 0, otherwise g

fixes ∞, and λ 6= 1, otherwise f is the identity, both of which contradict our
assumptions. But then if we let t = c/a(1/λ2−1), g has the form g(z) = z

tz+1
,

which has a fixed point only when tz = 0. But since t 6= 0, this has only
one fixed point, and thus is parabollic, a contradiction. So all hyperbolic
elements in Γ have the same fixed points, and so the group is cyclic.

Case 2 Suppose Γ has an orbit of order 2 in R
⋃
{∞}. Then an element

in the group either fixes each of these points or interchanges them. Then
there can be no parabolic elements, for if we conjugate in order to express
such an element as f(z) = z + k for k 6= 0, it’s clear that any z is either a
fixed point or has an infinite orbit, as fn(z) = z + nk is an element of the
group for any n and only ∞ is fixed by such a group of transforms.

If there are just hyperbolic elements, then the points in the orbit cor-
respond to the fixed points of these elements, as hyperbolic elements can’t
interchange two points. To see why, express such an element as f(z) = λz.
Then f 2 fixes the two points, which means λ is 1, and f is just the identity.
It follows that the group is cyclic. If all elements are elliptic, the lemma we
proved earlier also yields this result.

Now consider the case in which there are both elliptic and hyperbolic
elements. The hyperbolic elements must fix the two points, and the elliptic
elements must alternate them. We can see that the latter claim is true
by looking at the Poincar model and thinking of elliptic transformations as
rotations, in which case fixing two points on the boundary are equivalent to
the identity.

Let us conjugate Γ so that the two points of the orbit are 0 and ∞.
In order to fix the two points, a hyperbolic element must be of the form[
a 0
0 1/a

]
, and in order to alternate them, an elliptic element must be of
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the form

[
0 b
−1/b 0

]
. We can certainly conjugate so that at least one ellip-

tic element is of the form

[
0 −1
1 0

]
. We can use this transform so that if[

0 β
−1/β 0

]
is any elliptic element in the group, there is also some hyperbolic

element

[
β 0
0 −1/β

]
obtained by composition which in a sense corresponds

to the elliptic element.
By discreteness, all the hyperbolic elements are generated by some el-

ement

[
k1/2 0

0 1/k1/2

]
, and since we can associate a hyperbolic element to

each elliptic element by means of composition with

[
0 −1
1 0

]
, then the whole

group is generated by these two transforms, which yields the desired result.
Case 3 Γ has an orbit of order 2 in H or an orbit of order k ≥ 3 in the

closure of H. Since parabolic and hyperbolic elements can have at most 2
fixed points on R

⋃
{∞}, and all points in H of these transforms have infinite

orbits, then this means Γ contains only elliptic elements, and so is cyclic.

1.2 Non-Elementary Groups

The following results facilitate the discussion of Jörgensen’s inequality.

Theorem 2 A non-elementary subgroup of PSL(2,R) must contain a hyper-
bolic element.

Call the subgroup Γ, and suppose it contains no hyperbolic elements. Then
by the first lemma we showed, it must contain a parabolic element. Let us

conjugate Γ so that this element fixes ∞, and is of the form f =

[
1 1
0 1

]
.

Pick any other gεΓ so that g =

[
a b
c d

]
. Then fng =

[
a+ nc b+ nd
c d

]
, and

tr2 = (a + d + nc)2. Since there are no hyperbolic elements, this value is
less than or equal to 4 for any n. But since we can take n to be as large as
we want, this implies c = 0. Then g also fixes ∞, and since g is arbitrary,
every element of Γ fixes infinity, which means that Γ is elementary, which
contradicts our assumptions.

Corollary 1 Every non-elementary group contains infinitely many hyper-
bolic elements with distinct fixed points.
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It is rather easy to show that there are infinitely many hyperbolic elements
in which one fixed point is distinct. We take our existent hyperbolic element,
call it h, with fixed points a and b. Then all we need is a transform g in
PSL(2,R) that takes a third point c to either a or b, so that g−1hg fixes c.

However, we wish to show the stronger result: that we can find infinitely
many hyperbolic elements with pairwise disjoint fixed points. So pick a TεΓ
hyperbolic, with fixed points a and b, and conjugate with some g as above
so that S = g−1Tg has at least one fixed point which is different from those
of T . Then we have two alternatives: {a, b} and {S(a), S(b)} are disjoint, or
one element intersects both sets (both can’t intersect as this would mean S
exchanges the two points, which we’ve shown isn’t possible for a hyperbolic
transform).

Suppose they are disjoint. Then H = STS−1 is hyperbolic and shares no
fixed points with T . Suppose we were to take STS−1(a). Then S−1 sends a
to some c different from a and b, T and T sends c to some d. If S sends d
to a, it means c = d, which is a contradiction. The same holds for b. So the
fixed points of H are not a or b.

We then construct a sequence T nHT−n, and claim that each term has
fixed points which are pair-wise distinct. The reasoning is pretty much
the same as above. If T nHT−n has a pair of fixed points, then they can’t
be the fixed points of T , so T−1 sends them to something different, and
then T nHT−n maps them to a point which will not get inverted by T , so
T n+1HT−(n+1) can’t have the same fixed points.

Now suppose {a, b}
⋂
{S(a), S(b)} is non-empty. We can assume without

loss of generality that a lies in the intersection. Then [T,H] = THT−1H−1 =
TSTS−1T−1ST−1S−1. If S(a) = a, this element clearly fixes a. If S(b) = a,
then T and its inverse both fix a, and S and its inverse just send b to a and
a to b, respectively. So H fixes a.

We wish to show that [T,H] is parabolic, i.e. it fixes solely a. So we
conjugate Γ so that the fixed points of T are 0 and ∞, and the fixed point

it shares with H is ∞. Then T =

[
u 0
0 1/u

]
for u > 1, and H =

[
a b
c d

]
for some a, b, c, d. If H is to fix ∞, then c = 0, and since 0 is not a fixed

point, b 6= 0. This means H has the form H =

[
1 b
0 1

]
for b 6= 0. We can

then compute [T,H] to be

[
1 b(u2 − 1)
0 1

]
, so that its transform is of the form

H(z) = z + t for non-zero t, and other than ∞, every point is fixed.
Call P = [T,H]. Since Γ is non-elementary, a has an infinite orbit, and

we can find an element U such that U doesn’t map a to a or b, so that U−1

doesn’t map either a or b to a, and so Q = UPU−1 fixes neither a nor b, but is
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still parabolic. Then QnTQ−n is hyperbolic for all n, and for sufficiently high
values of n, both a and b will be mapped to points far away from themselves,
so that T will not fix them, and the set {a, b}

⋂
{QnTQ−n(a), QnTQ−n(b)}

will be empty, which reduces to the earlier case.

Theorem 3 If a subgroup of PSL(2,R) contains no elliptic elements, it is
either elementary or discrete.

Call the subgroup Γ, and assume it’s non-elementary. Then it contains a
hyperbolic element h, which we can conjugate so it’s given by the matrix

h =

[
u 0
0 1/u

]
. We wish to show that for any sequence gn → Id, gn = Id for

sufficiently large n.

Let gn =

[
an bn
cn dn

]
be such a sequence. Then [h, gn] =

[
andn − bncnu2 anbn(u2 − 1)
cndn(1/u2 − 1) andn − bncn/u2

]
,

so that tr[h, gn] = 2andn− bncn(u2− 1/u2) = 2andn− bncn((u− 1/u)2 + 2) =
2(andn−bncn)−bncn(u−1/u)2 = 2−bncn(u−1/u)2. Since gn → Id, [h, gn]→
Id too, which means this value tends to 2. Since there are no elliptic elements,
|tr[h, gn]| ≥ 2, this means that for large n, bncn ≤ 0.

Now let us define fn = [h, gn] =

[
An Bn

Cn Dn

]
. As the calculations are the

same as above, we know tr[h, fn] = 2−BnCn(u−1/u)2 = 2− (anbncndn(u2−
1)(1/u2 − 1)(u − 1/u)2 = 2 − (anbncndn(2 − (u2 + 1/u2)(u − 1/u)2) = 2 +
anbncndn(u− 1/u)4 = 2 + (1 + bncn)bncn(u− 1/u)4. So for large n, where bn
and cn are close to 0, bncn ≥ 0 so that the above expression remains greater
than or equal to 2. If we combine the results, this means that for sufficiently
large n, bncn = 0, so either cn = 0, in which case gn fixes ∞, or bn = 0, in
which case it fixes 0.

Either way, gn will share a fixed point with h, as those are the fixed points
of h in this conjugation. If we pick three hyperbolic elements with distinct
fixed points, h1, h2 and h3, then we can obtain the same results without
changing our sequence gn, so that gn, for sufficiently large n, shares a fixed
point with three elements such that these fixed points are all distinct. Then
gn must be the identity, as otherwise it can have at most 2 fixed points. So
in the case that Γ is non-elementary, it is discrete.

2 Jörgensen’s Inequality

Jörgensen’s inequality is a theorem that places a large constraint on the way
non-elementary, discrete groups behave. First, we define < T, S > to be
the group generated by elements T, S. The theorem states that if a discrete
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group generated by two such elements is non-elementary, then at least one
of this elements must differ considerably from the identity.

Theorem 4 If T, SεPSL(2,R), and < T, S > describes a discrete, non-
elementary group, then |Tr(T )2 − 4|+ |Tr(TST−1S−1)− 2| ≥ 1. The lower
bound is best possible.

The proof will proceed by contradiction. But first, we show two lemmas.

Lemma 2 Suppose T, SεPSL(2,R) and T 6= Id. Define S0 = S, S1 =
S0TS

−1
0 , . . . , Sr+1 = SrTS

−1
r , . . . . If, for some n, Sn = T , then < T, S > is

elementary.

Suppose T has a fixed point a. Then since Sr for r > 0 are conjugate to T ,
they also have one fixed point. We have Sr+1Sr(a) = SrTS

−1
r Sr(a) = Sr(a),

so Sr+1 fixes Sr(a). Since T = Sn, it follows that Sn−1(a) = a, and by
induction, Sr fixes a for all r. Since a is fixed by the generators of < T, S >,
it is fixed by all elements in the group, and so the group is elementary.

Now suppose T has exactly two fixed points. Then it is hyperbolic, and
we can conjugate everything so that T (z) = kz for some k 6= 1. Then Sr all
have two fixed points. Recalling that T (0) = Sn−1(0) and T (∞) = Sn−1(∞),
the same reasoning as above lets us conclude that Sr all map {0,∞} onto
the same set (in fact, these are the fixed points for all but S0). Since these
two points are fixed by the generators of < T, S >, the same holds for all
elements in the group, and so it’s elementary.

Lemma 3 Let T =

[
1 1
0 1

]
, S =

[
a b
c d

]
be two matrices in PSL(2,R). Then

the inequality in Jörgensen’s inequality holds if and only if |c| ≥ 1.

Clearly, this reduces to showing that |Tr(TST−1S−1)− 2| ≥ 1 The proof
is purely computational.

[T, S] =

[
d(a+ c)− c(−a− c+ b+ d) a(−a− c+ b+ d)− b(a+ c)

cd− c(−c+ d) −bc+ a(−c+ d)

]
so that
Tr[T, S] = ad+cd+ac+c2−bc−cd−bc−ac+ad = 2(ad−bc)+c2 = 2+c2.
It follows that the equality holds when |c|2 ≥ 1, which of course is true if

and only if |c| ≥ 1.
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2.1 Proof of the theorem

We first get rid of a trivial case: if T is of order 2, then Tr(T ) = 0 so that
the equality holds.

For the other cases, we define Sr as in the first lemma of the previous
section. We wish to show that if the inequality doesn’t hold, then T = Sn

for some n, which implies that < T, S > is elementary.
Case 1: T is parabolic Since the trace is invariant under conjugation, we

may assume T =

[
1 1
0 1

]
, S =

[
a b
c d

]
, where c 6= 0 (otherwise ∞ is fixed by

both S,T and the group is elementary). Suppose that the inequality doesn’t

hold. Then our earlier lemma shows that |c| < 1. If we write Sn =

[
an bn
cn dn

]
,

then we obtain from Sn+1 = SnTS
−1
n :[

an+1 bn+1

cn+1 dn+1

]
=

[
an bn
cn dn

] [
1 1
0 1

] [
dn −bn
−cn an

]
=

[
1− ancn a2n
−c2n 1 + ancn

]
(1)

By induction, we get that for n > 0, cn = −c2n, which goes to 0 as n → ∞,
since |c| < 1. We also have by induction that |an| ≤ n + |a|. Since an
is linearly bounded, even if an → ∞, ancn → 0. Since this means an →

1,

[
1− ancn a2n
−c2n 1 + ancn

]
→
[
1 1
0 1

]
, and by discreteness, T = Sn for some n.

Case 2: T is hyperbolic We may assume that T =

[
u 0
0 1/u

]
S =

[
a b
c d

]
for u > 1. Neither b nor c are 0, otherwise T and S share a fixed point, and
the group is elementary. So bc 6= 0.

Note that [T, S] =

[
andn − bncnu2 anbn(u2 − 1)
cndn(1/u2 − 1) andn − bncn/u2

]
If the inequality fails, then
µ = |Tr(T )2−4|+|Tr[T, S]−2| = |(u+1/u)2−4|+|2−bc(u−1/u)2−2| =

|u− 1/u|2 + |bc||u− 1/u|2 = (1 + |bc|)|u− 1/u)2 < 1.
We also can use Sn+1 = SnTS

−1
n to write:[

an+1 bn+1

cn+1 dn+1

]
=

[
andnu− bncn/u anbn(u− 1/u)
cndn(u− 1/u) andn/u− bncnu

]
. Then bn+1cn+1 =

−bncn(1 + bncn)(u− 1/u)2

By induction, |bncn| ≤ µn|bc|, so bncn → 0. Since andn = 1 + bncn, then
it goes to 1, and so an → u, dn → 1/u
| bn+1

bn
| = |an(1/u− u)| → |u(1/u− u)| ≤ µ1/2|u|. So | bn+1

un+1 | < µ1/2| bn
un , and

so bn
un → 0. Likewise, cnu

n → 0.

Therefore, if we define a series T−nS2nT
n =

[
a2n b2n/u

2n

c2nu
2n d2n

]
→ T .
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Since < T, S > is discrete, for large n, T−nS2nT
n = T , which means

S2n = T , and so the conditions for our lemma are satisfied.
Case 3: T is elliptic Reduces to Case 2 in the unit disc model.
To show that the lower bound is best possible, we consider the group

generated by T (z) = z + 1 and S(z) = −1/z. < T, S > is clearly non-
elementary, and since these elements actually belong to PSL(2,Z), the group
is discrete (should this statement prove too much of a leap of faith, a geo-
metric intuition of the transforms should suffice to see that they are discrete,
as T is a translation with discrete steps, and S is a reflection across i). Since
[T, S] = 2z+1

z+1
has trace 3, equality is satisfied.
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