LECTURE 23.

ALIREZA SALEHI GOLSEFIDY

1. Recall

 $\mathbb{Z}[\sqrt{10}]$ is not a UFD.

Theorem 1. $\mathbb{Z}[i]$ is a ED.

Proof. It has been outlined in one of the this week's problems.

2. Vector spaces

Definition 2. A set V is called a vector space over F if

- (1) V is an abelian group. (It is usually considered an additive group.)
- (2) There is a "scalar multiplication", i.e. for any $c \in F$ and $v \in V$, we can "multiply" v by c and write it as cv. The scalar multiplication has the following properties:
 - (a) c(c'v) = (cc')v.
 - (b) c(v + v') = cv + cv'.
 - (c) (c + c')v = cv + c'v.
 - (d) 1v = v.

Members of V are called vectors and members of F are called scalars.

Example 3. (1) \mathbb{R}^n is a vector space over \mathbb{R} .

- (2) (A bit more general) For any field F, F^n is a vector space over F.
- (3) (Even more general) Let R be a unital ring and let F be a subring of R with the same unity. Then R is a vector space over F.

Example 4. (1) $M_n(\mathbb{Z}/p\mathbb{Z})$ is a vector space over $\mathbb{Z}/p\mathbb{Z}$.

- (2) $\mathbb{Q}[x]$ is a vector space over \mathbb{Q} .
- (3) $\mathbb{Q}[i]$ is a vector space over \mathbb{Z} .
- (4) $\mathbb{Z}[i]$ is not a vector space over \mathbb{Q} .

As always, one has to study "substructures" and "homomorphisms": subspaces and linear maps.

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112

 $E\text{-}mail\ address:\ \texttt{golsefidyQucsd.edu}$

Date: 3/12/2012.