
LECTURE 22.
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1. Recall

Last time we defined a Euclidean Domain and we were proving that every ED is a PID.

2. A Euclidean domain is a PID

Theorem 1. Every ED is a PID.

Proof. Let I be a non-zero proper ideal of D. Let a ∈ I be such that

(1) d(a) := min
06=x∈I

d(x).

We claim that I is generated by a. Assume the contrary. So there is b ∈ I which is not a multiple of a.
Hence by the properties of a ED, there is a non-zero r ∈ D such that b = aq + r and d(r) < d(a). This
implies that r = b− aq ∈ I which contradicts Equation (1). �

So we have that ED implies PID and PID implies UFD. The converse of neither of these is true.

Example 2 (A UFD which is not PID). We have seen that Z[x] is not PID. In fact we proved that 〈2, x〉 is
not a principal ideal. However one can prove that Z[x] is a UFD. I will give it as an exercise. It is essentially
based on Gauss’s Lemma and the fact that a primitive polynomial is irreducible over Q if and only if it is
irreducible over Z.

Example 3 (A PID which is not ED). Z[ 1+
√
−19
2 ] can be showed to be a PID and not a ED.

Lemma 4. Let N be the norm map of Z[
√
d]. If N(z) = p is prime, then z is irreducible in Z[

√
d].

Proof. If z = z1z2, then p = N(z) = N(z1)N(z2). Since p is prime and N(z1) and N(z2) are non-negative
integers, N(zi) = 1 for some i. Hence zi is unit for some i. Thus z is irreducible. �

Example 5. (1) In Z[i], 2 + i is irreducible.
(2) In Z[i], 3 + 2i is irreducible.

(3) In Z[
√

6], 2 +
√

6 is irreducible.

(4) In Z[
√

6], 2 +
√

6 is irreducible.

Lemma 6. (1) There is no z ∈ Z[
√

10] such that N(z) = 2.

(2) There is no z ∈ Z[
√

10] such that N(z) = 5.

Proof. 1. Assume the contrary. So there are x, y ∈ Z such that x2 − 10y2 = ±2. Look at both sides modulo
5. So x2 ≡ ±2 (mod 5), which is a contradiction (square of any element in Z/5Z is either 0 or ±1).

2. Assume the contrary. So there are x, y ∈ Z such that x2 − 10y2 = 5. Looking at both sides modulo 5, we
can deduce that x is a multiple of 5, i.e. x = 5x′. Hence 25x′2− 10y2 = 5 and so 5x′2− 2y2 = 1. Again look
at both sides modulo 5. So −2y2 ≡ 1 (mod 5), which is a contradiction. �
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Lemma 7. 2, 5 and
√

10 are irreducibles in Z[
√

10].

Proof. If 2 = z1z2, then 4 = N(2) = N(z1)N(z2). Since by the previous Lemma N(zi) cannot be equal
to 2, one of the norms has to be one and the other one 4, which implies one of them is a unit. So 2 is an
irreducible.

If 5 = z1z2, then 25 = N(5) = N(z1)N(z2). Since by the previous Lemma N(zi) cannot be equal to 5, one
of the norms has to be one and the other one 25, which implies one of them is a unit. So 5 is an irreducible.

If
√

10 = z1z2, then 10 = N(
√

10) = N(z1)N(z2). Since by the previous Lemma N(zi) cannot be equal to

2, one of the norms has to be one and the other one 10, which implies one of them is a unit. So
√

10 is an
irreducible. �

Lemma 8. In Z[
√
d] if a and b are associates, then N(a) = N(b).

Proof. By the definition, there is a unit u such that a = ub. So N(a) = N(u)N(b) = N(b). �

Example 9. In Z[
√

10], 2 and
√

10 are not associates and neither are 5 and
√

10.

Lemma 10. (1) In Z[
√

10], 2, 5 and
√

10 are not primes.

(2) Z[
√

10] is not a UFD.

Proof. (1) 2 divides
√

10 ·
√

10 but 2 does not divide
√

10. 5 divides
√

10 ·
√

10 but it does not divide√
10.
√

10 divides 2 · 5 but it does not divide either 2 nor 5.
(2) 2 · 5 = 10 =

√
10 ·
√

10 by the previous lemmas, these are two different irreducible factorizations of
10.
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