## LECTURE 22.

## ALIREZA SALEHI GOLSEFIDY

## 1. Recall

Last time we defined a Euclidean Domain and we were proving that every ED is a PID.

## 2. A Euclidean domain is a PID

Theorem 1. Every ED is a PID.
Proof. Let $I$ be a non-zero proper ideal of $D$. Let $a \in I$ be such that

$$
\begin{equation*}
d(a):=\min _{0 \neq x \in I} d(x) . \tag{1}
\end{equation*}
$$

We claim that $I$ is generated by $a$. Assume the contrary. So there is $b \in I$ which is not a multiple of $a$. Hence by the properties of a ED, there is a non-zero $r \in D$ such that $b=a q+r$ and $d(r)<d(a)$. This implies that $r=b-a q \in I$ which contradicts Equation (1).

So we have that ED implies PID and PID implies UFD. The converse of neither of these is true.
Example 2 (A UFD which is not PID). We have seen that $\mathbb{Z}[x]$ is not PID. In fact we proved that $\langle 2, x\rangle$ is not a principal ideal. However one can prove that $\mathbb{Z}[x]$ is a UFD. I will give it as an exercise. It is essentially based on Gauss's Lemma and the fact that a primitive polynomial is irreducible over $\mathbb{Q}$ if and only if it irreducible over $\mathbb{Z}$.
Example 3 (A PID which is not ED). $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ can be showed to be a PID and not a ED.
Lemma 4. Let $N$ be the norm map of $\mathbb{Z}[\sqrt{d}]$. If $N(z)=p$ is prime, then $z$ is irreducible in $\mathbb{Z}[\sqrt{d}]$.
Proof. If $z=z_{1} z_{2}$, then $p=N(z)=N\left(z_{1}\right) N\left(z_{2}\right)$. Since $p$ is prime and $N\left(z_{1}\right)$ and $N\left(z_{2}\right)$ are non-negative integers, $N\left(z_{i}\right)=1$ for some $i$. Hence $z_{i}$ is unit for some $i$. Thus $z$ is irreducible.

Example 5. (1) In $\mathbb{Z}[i], 2+i$ is irreducible.
(2) In $\mathbb{Z}[i], 3+2 i$ is irreducible.
(3) In $\mathbb{Z}[\sqrt{6}], 2+\sqrt{6}$ is irreducible.
(4) In $\mathbb{Z}[\sqrt{6}], 2+\sqrt{6}$ is irreducible.

Lemma 6. (1) There is no $z \in \mathbb{Z}[\sqrt{10}]$ such that $N(z)=2$.
(2) There is no $z \in \mathbb{Z}[\sqrt{10}]$ such that $N(z)=5$.

Proof. 1. Assume the contrary. So there are $x, y \in \mathbb{Z}$ such that $x^{2}-10 y^{2}= \pm 2$. Look at both sides modulo 5. So $x^{2} \equiv \pm 2(\bmod 5)$, which is a contradiction (square of any element in $\mathbb{Z} / 5 \mathbb{Z}$ is either 0 or $\pm 1$ ).
2. Assume the contrary. So there are $x, y \in \mathbb{Z}$ such that $x^{2}-10 y^{2}=5$. Looking at both sides modulo 5 , we can deduce that $x$ is a multiple of 5 , i.e. $x=5 x^{\prime}$. Hence $25 x^{\prime 2}-10 y^{2}=5$ and so $5 x^{2}-2 y^{2}=1$. Again look at both sides modulo 5 . So $-2 y^{2} \equiv 1(\bmod 5)$, which is a contradiction.

[^0]Lemma 7. 2, 5 and $\sqrt{10}$ are irreducibles in $\mathbb{Z}[\sqrt{10}]$.
Proof. If $2=z_{1} z_{2}$, then $4=N(2)=N\left(z_{1}\right) N\left(z_{2}\right)$. Since by the previous Lemma $N\left(z_{i}\right)$ cannot be equal to 2 , one of the norms has to be one and the other one 4 , which implies one of them is a unit. So 2 is an irreducible.

If $5=z_{1} z_{2}$, then $25=N(5)=N\left(z_{1}\right) N\left(z_{2}\right)$. Since by the previous Lemma $N\left(z_{i}\right)$ cannot be equal to 5 , one of the norms has to be one and the other one 25 , which implies one of them is a unit. So 5 is an irreducible.
If $\sqrt{10}=z_{1} z_{2}$, then $10=N(\sqrt{10})=N\left(z_{1}\right) N\left(z_{2}\right)$. Since by the previous Lemma $N\left(z_{i}\right)$ cannot be equal to 2 , one of the norms has to be one and the other one 10 , which implies one of them is a unit. So $\sqrt{10}$ is an irreducible.

Lemma 8. In $\mathbb{Z}[\sqrt{d}]$ if $a$ and $b$ are associates, then $N(a)=N(b)$.
Proof. By the definition, there is a unit $u$ such that $a=u b$. So $N(a)=N(u) N(b)=N(b)$.
Example 9. In $\mathbb{Z}[\sqrt{10}], 2$ and $\sqrt{10}$ are not associates and neither are 5 and $\sqrt{10}$.
Lemma 10. (1) In $\mathbb{Z}[\sqrt{10}], 2,5$ and $\sqrt{10}$ are not primes.
(2) $\mathbb{Z}[\sqrt{10}]$ is not a UFD.

Proof. (1) 2 divides $\sqrt{10} \cdot \sqrt{10}$ but 2 does not divide $\sqrt{10} .5$ divides $\sqrt{10} \cdot \sqrt{10}$ but it does not divide $\sqrt{10} . \sqrt{10}$ divides $2 \cdot 5$ but it does not divide either 2 nor 5 .
(2) $2 \cdot 5=10=\sqrt{10} \cdot \sqrt{10}$ by the previous lemmas, these are two different irreducible factorizations of 10.


[^0]:    Date: 3/9/2012.

