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1. Recall

On Monday, we defined a UFD and proved that in a PID any non-zero, non-unit element is a product of
irreducibles.

2. PID is UFD

Theorem 1. Every PID is a UFD.

Proof. We have already proved the existence. So it is enough to prove the uniqueness. Let a be a non-zero,
non-unit element and assume that pi and qi are irreducibles such that

a = p1 · p2 · · · · · pr = q1 · q2 · · · · · qs.
In a PID, any irreducible is a prime. So p1 dividing q1 · · · · · qs, implies p1 divides qj1 for some j1. Since qj1
is irreducible, we have p1 and qj1 are associates. Now we can cancel them and repeat this argument. �

3. Pell’s equation and Z[
√
d]

Lot’s of problems in number theory are naturally connected to ring theory. For instance, Pell’s equations:
what are the integer solutions of x2 − dy2 = ±1 for a given integer d?

Definition 2. (1) Let N : Z[
√
d]→ Z≥0 be

N(x+
√
dy) := |x2 − dy2|.

N is called the norm map.
(2) Let τ : Z[

√
d]→ Z[

√
d] be

τ(x+
√
dy) := x−

√
dy.

τ(z) is called the conjugate of z.

Lemma 3. (1) τ is a ring isomorphism.

(2) N(z) = |z · τ(z)| for any z ∈ Z[
√
d].

(3) N(zz′) = N(z)N(z′) for any z, z′ ∈ Z[
√
d].

Proof. 1. One can easily check this.

2. Let z = x+
√
dy. So

N(z) = N(x+
√
dy) = |x2 − dy2| = |(x+

√
dy)(x−

√
dy)| = |z · τ(z)|.

3. N(zz′) = |(zz′ · τ(zz′)| = |zz′τ(z)τ(z′)| = |zτ(z)||z′τ(z′)| = N(z)N(z′). �

Theorem 4. U(Z[
√
d]) = {x+

√
dy ∈ Z[

√
d]| x2 − dy2 = ±1}.
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Proof. We have to show two directions. First assume that x2−dy2 = ±1 and we have to prove that x+
√
dy

is a unit in Z[
√
d]. But it is clear as

(x+
√
dy)(±(x−

√
dy)) = 1,

and ±(x−
√
dy) ∈ Z[

√
d].

Now we have to show the other direction: if z = x+
√
dy is a unit in Z[

√
d], then N(z) = |x2 − dy2| = 1.

If z is a unit, then there is z′ ∈ Z[
√
d] such that zz′ = 1. Hence

N(zz′) = N(1) = 1 ⇒ N(z)N(z′) = 1.

This means the product of two non-negative integers N(z) and N(z′) is one. Thus both of them are one. So
N(z) = 1 and we are done. �

This shows solving Pell’s equation is the same as finding units of the ring Z[
√
d].

4. How can we check if an integral domain is PID?

So far we know two important PIDs: Z and F [x], where F is a field. In some sense, we proved both of them
in the same way: using “division algorithm”. Let’s generalize it.

Definition 5. An integral domain D is called a Euclidean Domain (ED) if there is a function d : D \ {0} →
Z≥0 (sometimes called a measuring function) with the following properties:

(1) d(ab) ≥ d(a) for any a, b ∈ D \ {0}.
(2) For any a ∈ D and b ∈ D \ {0}, there are q and r in D such that a = bq + r and either r = 0 or

d(r) < d(b).

Example 6. d : Z \ {0} → Z≥0, d(n) = |n| satisfies the above properties. And so Z is a ED.

d : F [x]→ Z≥0, d(f(x)) = deg(f) satisfies the above properties. And so F [x] is a ED.

Theorem 7. Every ED is a PID.

Proof. Let I be a non-zero proper ideal of D. Let a ∈ I be such that

d(a) = min
06=x∈I

d(x).

Claim I = 〈a〉. If not, there is b ∈ I which is not a multiple of a. So there is a non-zero r such that b = aq+r
and d(r) < d(a). This means r ∈ I, which is a contradiction. �
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