LECTURE 21.

ALIREZA SALEHI GOLSEFIDY

1. Recall

On Monday, we defined a UFD and proved that in a PID any non-zero, non-unit element is a product of irreducibles.

2. PID is UFD

Theorem 1. Every PID is a UFD.
Proof. We have already proved the existence. So it is enough to prove the uniqueness. Let a be a non-zero, non-unit element and assume that p_{i} and q_{i} are irreducibles such that

$$
a=p_{1} \cdot p_{2} \cdots \cdot p_{r}=q_{1} \cdot q_{2} \cdots \cdots q_{s}
$$

In a PID, any irreducible is a prime. So p_{1} dividing $q_{1} \cdots q_{s}$, implies p_{1} divides $q_{j_{1}}$ for some j_{1}. Since $q_{j_{1}}$ is irreducible, we have p_{1} and $q_{j_{1}}$ are associates. Now we can cancel them and repeat this argument.

3. Pell's equation and $\mathbb{Z}[\sqrt{d}]$

Lot's of problems in number theory are naturally connected to ring theory. For instance, Pell's equations: what are the integer solutions of $x^{2}-d y^{2}= \pm 1$ for a given integer d ?
Definition 2. (1) Let $N: \mathbb{Z}[\sqrt{d}] \rightarrow \mathbb{Z}^{\geq 0}$ be

$$
N(x+\sqrt{d} y):=\left|x^{2}-d y^{2}\right|
$$

N is called the norm map.
(2) Let $\tau: \mathbb{Z}[\sqrt{d}] \rightarrow \mathbb{Z}[\sqrt{d}]$ be

$$
\tau(x+\sqrt{d} y):=x-\sqrt{d} y
$$

$\tau(z)$ is called the conjugate of z.
Lemma 3. (1) τ is a ring isomorphism.
(2) $N(z)=|z \cdot \tau(z)|$ for any $z \in \mathbb{Z}[\sqrt{d}]$.
(3) $N\left(z z^{\prime}\right)=N(z) N\left(z^{\prime}\right)$ for any $z, z^{\prime} \in \mathbb{Z}[\sqrt{d}]$.

Proof. 1. One can easily check this.
2. Let $z=x+\sqrt{d} y$. So

$$
N(z)=N(x+\sqrt{d} y)=\left|x^{2}-d y^{2}\right|=|(x+\sqrt{d} y)(x-\sqrt{d} y)|=|z \cdot \tau(z)|
$$

3. $N\left(z z^{\prime}\right)=\mid\left(z z^{\prime} \cdot \tau\left(z z^{\prime}\right)\left|=\left|z z^{\prime} \tau(z) \tau\left(z^{\prime}\right)\right|=|z \tau(z)|\right| z^{\prime} \tau\left(z^{\prime}\right) \mid=N(z) N\left(z^{\prime}\right)\right.$.

Theorem 4. $U(\mathbb{Z}[\sqrt{d}])=\left\{x+\sqrt{d} y \in \mathbb{Z}[\sqrt{d}] \mid x^{2}-d y^{2}= \pm 1\right\}$.

[^0]Proof. We have to show two directions. First assume that $x^{2}-d y^{2}= \pm 1$ and we have to prove that $x+\sqrt{d} y$ is a unit in $\mathbb{Z}[\sqrt{d}]$. But it is clear as

$$
(x+\sqrt{d} y)(\pm(x-\sqrt{d} y))=1
$$

and $\pm(x-\sqrt{d} y) \in \mathbb{Z}[\sqrt{d}]$.
Now we have to show the other direction: if $z=x+\sqrt{d} y$ is a unit in $\mathbb{Z}[\sqrt{d}]$, then $N(z)=\left|x^{2}-d y^{2}\right|=1$.
If z is a unit, then there is $z^{\prime} \in \mathbb{Z}[\sqrt{d}]$ such that $z z^{\prime}=1$. Hence

$$
N\left(z z^{\prime}\right)=N(1)=1 \Rightarrow N(z) N\left(z^{\prime}\right)=1
$$

This means the product of two non-negative integers $N(z)$ and $N\left(z^{\prime}\right)$ is one. Thus both of them are one. So $N(z)=1$ and we are done.

This shows solving Pell's equation is the same as finding units of the ring $\mathbb{Z}[\sqrt{d}]$.

4. How can we check if an integral domain is PID?

So far we know two important PIDs: \mathbb{Z} and $F[x]$, where F is a field. In some sense, we proved both of them in the same way: using "division algorithm". Let's generalize it.
Definition 5. An integral domain D is called a Euclidean Domain (ED) if there is a function $d: D \backslash\{0\} \rightarrow$ $\mathbb{Z} \geq 0$ (sometimes called a measuring function) with the following properties:
(1) $d(a b) \geq d(a)$ for any $a, b \in D \backslash\{0\}$.
(2) For any $a \in D$ and $b \in D \backslash\{0\}$, there are q and r in D such that $a=b q+r$ and either $r=0$ or $d(r)<d(b)$.
Example 6. $d: \mathbb{Z} \backslash\{0\} \rightarrow \mathbb{Z}^{\geq 0}$, $d(n)=|n|$ satisfies the above properties. And so \mathbb{Z} is a $E D$.
$d: F[x] \rightarrow \mathbb{Z}^{\geq 0}, d(f(x))=\operatorname{deg}(f)$ satisfies the above properties. And so $F[x]$ is a $E D$.
Theorem 7. Every ED is a PID.
Proof. Let I be a non-zero proper ideal of D. Let $a \in I$ be such that

$$
d(a)=\min _{0 \neq x \in I} d(x)
$$

Claim $I=\langle a\rangle$. If not, there is $b \in I$ which is not a multiple of a. So there is a non-zero r such that $b=a q+r$ and $d(r)<d(a)$. This means $r \in I$, which is a contradiction.

[^0]: Date: 3/7/2012.

