LECTURE 21.

ALIREZA SALEHI GOLSEFIDY

1. RECALL

On Monday, we defined a UFD and proved that in a PID any non-zero, non-unit element is a product of
irreducibles.

2. PID 1s UFD
Theorem 1. Every PID is a UFD.

Proof. We have already proved the existence. So it is enough to prove the uniqueness. Let a be a non-zero,
non-unit element and assume that p; and ¢; are irreducibles such that

a=p1r-P2-"Pr=4q1-q2" """ ds-
In a PID, any irreducible is a prime. So p; dividing ¢; - - - - - g5, implies p; divides g;, for some j;. Since g,
is irreducible, we have p; and ¢;, are associates. Now we can cancel them and repeat this argument. O

3. PELL'S EQUATION AND Z[V/d]
Lot’s of problems in number theory are naturally connected to ring theory. For instance, Pell’s equations:
what are the integer solutions of 22 — dy? = %1 for a given integer d?
Definition 2. (1) Let N : Z[\Vd] — Z=° be
N(z + Vdy) := 2% — dy?|.
N is called the norm map.
(2) Let 7 : Z[Vd] — Z[\d] be
(x4 Vdy) =z — Vdy.

7(z) is called the conjugate of z.

Lemma 3. (1) 7 is a ring isomorphism.
(2) N(2) = |z-7(2)| for any z € Z[\/d).
(3) N(22') = N(2)N(2') for any z,2' € Z[\/d].

Proof. 1. One can easily check this.
2. Let z =z + V/dy. So
N(z) = N(z + Vdy) = [2* — dy?| = |(z + Vdy)(z — Vdy)| = |z - 7(2)|.
3. N(z2') = (27" - 1(22")| = |z2'7(2)7(2)| = |27 (2)||2'7(Z")| = N(2)N(Z). O
Theorem 4. U(Z[Vd]) = {z +Vdy € Z[Vd]| 2 — dy* = £1}.
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Proof. We have to show two directions. First assume that z2 — dy? = +1 and we have to prove that z +v/dy
is a unit in Z[v/d]. But it is clear as

(& + Viy) (£(e — Vdy) = 1,
and +(z — Vdy) € Z[V4d).
Now we have to show the other direction: if z = z + v/dy is a unit in Z[v/d], then N(z) = |2% — dy?| = 1.
If 2 is a unit, then there is 2’ € Z[v/d] such that z2’ = 1. Hence
N(zz')=N(1)=1 = N(2)N(2) = 1.

This means the product of two non-negative integers N(z) and N(z) is one. Thus both of them are one. So
N(z) =1 and we are done. O

This shows solving Pell’s equation is the same as finding units of the ring Z[\/&]

4. HOW CAN WE CHECK IF AN INTEGRAL DOMAIN IS PID?

So far we know two important PIDs: Z and F[z], where F is a field. In some sense, we proved both of them
in the same way: using “division algorithm”. Let’s generalize it.

Definition 5. An integral domain D is called a Euclidean Domain (ED) if there is a function d : D\ {0} —
729 (sometimes called a measuring function) with the following properties:

(1) d(ab) > d(a) for any a,b € D\ {0}.
(2) For any a € D and b € D\ {0}, there are ¢ and r in D such that a = bg + r and either » = 0 or
d(r) < d(b).
Example 6. d:Z\ {0} — Z=9, d(n) = |n| satisfies the above properties. And so Z is a ED.
d: F[z] = Z=°, d(f(z)) = deg(f) satisfies the above properties. And so F[x] is a ED.

Theorem 7. Every ED is a PID.

Proof. Let I be a non-zero proper ideal of D. Let a € I be such that

d(a) = osmer d(z).

Claim I = (a). If not, there is b € I which is not a multiple of a. So there is a non-zero r such that b = ag+r
and d(r) < d(a). This means r € I, which is a contradiction. O
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