LECTURE 20.

ALIREZA SALEHI GOLSEFIDY

1. RECALL

Definition of a prime and irreducible elements.
Lemma 1. Let D be an integral domain, $a \in D$ and $I=\langle a\rangle$.
(1) a is prime if and only if I is a non-zero prime ideal.
(2) a is irreducible if and only if I is maximal among principle ideals.
(3) a and b are associates if and only if $\langle a\rangle=\langle b\rangle$.

Corollary 2. In a PID, every irreducible is prime.
Lemma 3. In any integral domain, every prime is irreducible.

2. UFD

Definition 4. An integral domain is called a Unique Factorization Domain if it satisfies the following properties:
(1) Every non-zero and non-unit element can be written as product of irreducible elements.
(2) This decomposition is unique up to associates and the order of its irreducible factors.

Lemma 5. Let D be a PID and $\left\{I_{i}\right\}$ be an ascending chain of ideals of D, i.e.

$$
I_{1} \subseteq I_{2} \subseteq I_{2} \subseteq \cdots
$$

Then there is a positive integer n such that

$$
I_{n}=I_{n+1}=\cdots
$$

Proof. Let $I=\bigcup_{i=1}^{\infty} I_{i}$. We showed that I is an ideal. Since D is a PID, there is $a \in D$ such that $I=\langle a\rangle$. So there is n such that $a \in I_{n}$. Then we argued that $I_{n}=I$ and so for any $i \geq n, I_{i}=I$.

Remark 6. If any ideal in D is finitely generated, then a similar argument implies that there is no distinct ascending chain of ideal of D.
Lemma 7. Let D be a PID. If $a \in D$ is a non-zero, non-unit element, then there is an irreducible p and a nonzero element b such that $a=p b$.

Proof. If not, we construct two sequences $\left\{b_{i}\right\}_{i=1}^{\infty}$ and $\left\{b_{i}^{\prime}\right\}_{i=1}^{\infty}$ of non-zero and non-unit elements of D such that

$$
a=b_{n} \cdot b_{n}^{\prime} \cdot b_{n-1}^{\prime} \cdots \cdots b_{1}^{\prime},
$$

and

$$
b_{n}=b_{n+1} \cdot b_{n+1}^{\prime},
$$

for any n.
Date: 3/5/2012.

By our contrary assumption, a is not irreducible so there are non-zero, non-unit elements b_{1} and b_{1}^{\prime} such that $a=b_{1} \cdot b_{1}^{\prime}$. If b_{1} is irreducible, then we have found an irreducible factor of a, so it is not and it can be written as product of two non-zero, non-unit elements b_{2} and b_{2}^{\prime}. Repeating this argument, we get the desired sequences.
But this implies that

$$
\left\langle b_{1}\right\rangle \subsetneq\left\langle b_{2}\right\rangle \subsetneq\left\langle b_{3}\right\rangle \subsetneq \cdots,
$$

which contradicts Lemma 5.
Lemma 8. Any non-zero, non-unit element in a PID can be written as a product of irreducibles.
Proof. If not, then there is a non-zero and non-unit element $a \in D$ which cannot be written as product of irreducibles. We will construct a sequence $\left\{p_{i}\right\}_{i=1}^{\infty}$ of irreducibles and a sequences $\left\{a_{i}\right\}_{i=1}^{\infty}$ of non-zero elements in D such that

$$
a=p_{1} \cdot p_{2} \cdots \cdot p_{n} \cdot a_{n}
$$

and

$$
a_{n}=p_{n+1} \cdot a_{n+1} .
$$

By Lemma 7, we can find an irreducible p_{1} and a nonzero element a_{1} such that $a=p_{1} \cdot a_{1}$. If a_{1} is unit, a is written as product of irreducibles. So by the contrary assumption, a_{1} is not unit. So again by Lemma 7 , there is an irreducible p_{2} and a non-zero element a_{2} such that $a_{1}=p_{2} \cdot a_{2}$. Repeating this argument, we get the desired sequences. But this implies that

$$
\left\langle a_{1}\right\rangle \subsetneq\left\langle a_{2}\right\rangle \subsetneq\left\langle a_{3}\right\rangle \subsetneq \cdots,
$$

which contradicts Lemma 5.

