LECTURE 2.

ALIREZA SALEHI GOLSEFIDY

In this lecture, we will review some of the definitions that we learned last time and we deduce simple basic algebraic properties.
Lemma 1. Let R be a ring. Then for any $a, b \in R$ we have
(1) $0 \cdot a=a \cdot 0=0$.
(2) $-(-a)=a$.
(3) $a \cdot(-b)=-(a \cdot b)=(-a) \cdot b$.
(4) $(-a) \cdot(-b)=a \cdot b$.

Proof. (1) Since $0=0+0$, for any $a \in R$, we have $a \cdot 0=a \cdot(0+0)=a \cdot 0+a \cdot 0$. Thus $0=a \cdot 0$.
(2) By the definition of additive inverse, we have $a+(-a)=0=-(-a)+(-a)$. Thus $a=-(-a)$.
(3) Since $b+(-b)=0$, we have $a \cdot(b+(-b))=a \cdot 0=0$. Thus $a \cdot b+a \cdot(-b)=0$. Therefore $a \cdot(-b)=-(a \cdot b)$. The rest are similar.

Last time we defined a left-inverse and a right-inverse and as an exercise you are supposed to find a ring and an element which is not invertible and it has a left-inverse. The following is related
Lemma 2. Let R be a unital ring.
(1) Let $a \in R$. If $b \in R$ is a left-inverse of a and $c \in R$ is a right-inverse of a, then $b=c$.
(2) If $a \in U(R)$, then there is a unique $b \in R$ such that $a \cdot b=b \cdot a=1$. It is called the (multiplicative) inverse of a and it is denoted by a^{-1}.
(3) If $a \in U(R)$ has a unique left-inverse, then it is invertible.

Proof. (1) $b=b \cdot 1=b \cdot(a \cdot c)=(b \cdot a) \cdot c=1 \cdot c=c$.
(2) If a is invertible, then by the definition it has a left-inverse b and a right-inverse c. Hence by part 1 $b=c$, which means there is $b \in R$ such that $b \cdot a=a \cdot b=1$.

If b_{1} and b_{2} satisfy the above equalities, then b_{1} is a left-inverse and b_{2} is a right-inverse, then again by part 1 we have $b_{1}=b_{2}$, which proves the uniqueness.
(3) Let b be the unique left-inverse of a. Then

$$
(a b-1+b) a=(a b) a-a+b a=a(b a)-a+1=a \cdot 1-a+1=a-a+1=1,
$$

which means $a b-1+b$ is also a left-inverse. Since we assumed b is the only left-inverse of a, we have

$$
a b-1+b=b
$$

Hence $a b=1$. Thus b is also a right-inverse of a, which means a is invertible.

Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: golsefidy@ucsd.edu
Date: 1/11/2012.

