LECTURE 17.

ALIREZA SALEHI GOLSEFIDY

1. Irreducibility test.

Last time we were in the middle of the following question:
Is $x^{5}-2 x^{2}-x+1$ irreducible over \mathbb{F}_{3} ?
By checking its values, we can see that it has no zero in \mathbb{F}_{3}. So it has no degree 1 factor. How about degree 2 factors? It is easier if we check only irreducible monic degree 2 polynomials. But how can we find these polynomials? By excluding the reducible ones. Doing so, we get three monic irreducible degree 2 polynomials and after checking we see that $x^{5}-2 x^{2}-x+1=\left(x^{2}+1\right)\left(x^{3}-x+1\right)$, which means it is reducible.
Theorem 1. Let $f \in \mathbb{Z}[x]$ and \bar{f} be f modulo p. Assume $\operatorname{deg}(f)=\operatorname{deg}(\bar{f})$. If \bar{f} is irreducible over $\mathbb{Z} / p \mathbb{Z}$, then f is also irreducible over \mathbb{Q}.

We proved it in the class. Our proof is similar to the proof in your book.
Remark 2. The inverse is not necessarily correct. For instance $x^{4}+1$ is irreducible over \mathbb{Q} but it is reducible over $\mathbb{Z} / \mathbb{Z}_{p}$ for any prime p.

Example 3. Is $f(x)=x^{3}-3 x-x+32$ irreducible over \mathbb{Q} ?
Answer: Yes, look at f modulo 3. We get $x^{3}-x-1$. Now it is easy to see that this has no zero in $\mathbb{Z} / 3 \mathbb{Z}$. Since it has degree 3, it is irreducible over $\mathbb{Z} / 3 \mathbb{Z}$. Hence $f(x)$ is irreducible over \mathbb{Q}.

We also defined prime elements and showed that in an integral domain a is prime if and only if $\langle a\rangle$ is a non-zero prime ideal.

Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: golsefidy@ucsd.edu

[^0]
[^0]: Date: 2/22/2012.

