LECTURE 17.

ALIREZA SALEHI GOLSEFIDY

1. Recall

Last time we talked about reducibility of degree 2 and 3 polynomials over a field and then started to investigate polynomials over \mathbb{Z} . We finished the first part of Gauss's lemma.

2. Gauss's Lemma and Reducibility over \mathbb{Z}

Let us recall Gauss's Lemma.

Lemma 1. (1) If $f, g \in \mathbb{Z}[x]$ are primitive, then fg is also primitive. (2) For any $f, g \in \mathbb{Z}[x]$, c(fg) = c(f)c(g).

Proof. We saw the proof of the first part in the previous lecture. Here is the proof of the second part:

Let $f = c(f)f_1$ and $g = c(g)g_1$. By the definition, it is clear that f_1 and g_1 are primitive polynomials. Hence by Gauss's Lemma f_1g_1 is also primitive. Thus $c(fg) = c(c(f)c(g)f_1g_1) = c(f)c(g)c(f_1g_1) = c(f)c(g)$, and we are done.

Theorem 2. (1) If f(x) is reducible over \mathbb{Q} , then it is reducible over \mathbb{Z} .

(2) Let f(x) be a primitive polynomial. f(x) is irreducible over bbz if and only if it is irreducible over \mathbb{O} .

Proof. 1. Let $f = c(f)f_1$. If f is reducible over \mathbb{Q} , then f_1 is also reducible over \mathbb{Q} . Let $f_1 = g \cdot h$, where $g, h \in \mathbb{Q}[x]$ and $\deg(g)$ and $\deg(h)$ are smaller than $\deg(f_1)$. There are integers n and m such that $ng, mh \in \mathbb{Z}[x]$. Hence $(mn)f_1 = (ng)(mh)$. So

$$mn = mnc(f_1) = c((mn)f_1) = c(ng)c(mh).$$

On the other hand, $ng = c(ng)g_1$ and $mh = c(mh)h_1$ where $g_1, h_1 \in \mathbb{Z}[x]$. Therefore $f_1 = g_1h_1$ and $f = c(f)g_1h_1$ and we are done.

2. By the first part, we know that if f(x) is irreducible over \mathbb{Z} , then it is irreducible over \mathbb{Q} . Now if f(x) is reducible over \mathbb{Z} , then there are $g,h\in\mathbb{Z}[x]$ such that $g\neq \pm 1$, $h\neq \pm 1$ and f(x)=g(x)h(x). If g (resp. h) is a constant, then g (resp. h) divides c(f), which is a contradiction. Thus $1\leq \deg(g), \deg(h)<\deg(f)$, which implies f is reducible over \mathbb{Q} .

3. Irreducibility test

In a finite world, in principle, one can check all the possible cases to see if a given polynomial is irreducible or not.

Example 3. Is $x^5 - 2x^2 - x + 1$ irreducible over \mathbb{F}_3 (when we would like to look at $\mathbb{Z}/p\mathbb{Z}$ as a field, we sometimes use \mathbb{F}_p notation instead!)?

Date: 2/22/2012.

1

Let's check case-by-case. Does it have a degree 1 factor? After we plug in we see that it has no zero in \mathbb{F}_3 , so it does not have a degree one factor.

Does it have a degree 2 factor? Without loss of generality we can just check monic degree 2 polynomials: there are 9 of them. We can then use the division algorithm to check if each one of these polynomials is a factor or not.

It is faster if we just check the degree 2 monic irreducible polynomials. How can we identify them?

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112

 $E ext{-}mail\ address: golsefidy@ucsd.edu}$