LECTURE 16.

ALIREZA SALEHI GOLSEFIDY

1. Recall.

In the previous lecture, we said what an irreducible polynomial is: a non-zero, non-unit polynomial f(x) such that, if f(x) = p(x)q(x), then either p(x) or q(x) is unit.

Remark 1. Let F be a field. Then a non-constant polynomial $p(x) \in F[x]$ is irreducible if and only if it cannot be written a product of two smaller degree polynomials.

We also proved

Proposition 2. Let F be a field. A non-constant polynomial $p(x) \in F[x]$ is irreducible if and only if $\langle p(x) \rangle$ is a maximal ideal if and only if $F[x]/\langle p(x) \rangle$ is a field.

2. Reducibility test for degrees 2 and 3.

In general, it is not easy to prove if a given polynomial is irreducible or not. But if the polynomial is of degree 2 or 3, it is relatively easy.

Theorem 3. Let F be a field and $p(x) \in F[x]$. Assume deg(p) = 2 or 3. Then it is reducible over F if and only if it has a solution in F.

Proof. In both of these cases, it is easy to see, that if p is reducible then, one of the factors is of degree 1, which implies that p has a solution over F. The other direction is a corollary of the Factor Theorem.

3. Gauss's Lemma and reducibility over \mathbb{Z} .

Now we would like to explore the relation between reducibility over \mathbb{Q} and \mathbb{Z} .

Example 4. f(x) = 2x is reducible over \mathbb{Z} but irreducible over \mathbb{Q} .

How about the other direction? What is the real obstruction? In Example 4, the scalar term was the problem. That is the motivation to define the *content* of a non-zero integer polynomial.

Definition 5. Let
$$0 \neq p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$$
. The content of p is defined to be $c(p) := \gcd(a_0, \dots, a_n)$.

p is called primitive if c(p) = 1.

Example 6. (1) c(2x+1) = 1.

- (2) $c(4x^3+2)=2$.
- (3) c(ap(x)) = ac(p) for any $a \in \mathbb{N}$ and $0 \neq p(x) \in \mathbb{Z}[x]$.

Theorem 7. (1) Let $f(x) \in \mathbb{Z}[x]$ be a primitive polynomial. Then f(x) is irreducible over bbq if and only if it is irreducible over \mathbb{Z} .

Date: 2/17/2012.

1

(2) Let $p(x) \in \mathbb{Z}[x]$. If p(x) is reducible over \mathbb{Q} , then it is reducible over \mathbb{Z} .

In order to prove Theorem 7, first we need to prove the following lemma.

- Lemma 8 (Gauss's Lemma). (1) Product of two primitive polynomials is also primitive.
 - (2) For any $f(x), g(x) \in \mathbb{Z}[x]$, we have that c(fg) = c(f)c(g).
- *Proof.* 1. If not, then there is a prime p which divides all the coefficients of f(x)g(x), i.e. $\bar{f}(x)\bar{g}(x)=0$, where $\bar{f}(x), \bar{g}(x) \in \mathbb{Z}/p\mathbb{Z}[x]$ are obtained by reducing the coefficients modulo p. Since $\mathbb{Z}/p\mathbb{Z}[x]$ is an integral domain, either $\bar{f}=0$ or $\bar{g}=0$. This implies that p divides all the coefficients of either f or g, which contradicts the fact that f and g are primitive.
- 2. By the definition, $f = c(f)f_1$ and $g = c(g)g_1$, where f_1 and g_1 are primitive. So $fg = c(f)c(g)f_1g_1$. By the first part, we know that f_1g_1 is primitive. Therefore c(fg) = c(f)c(g).

Proof of Theorem 7. 1. If f(x) is reducible over \mathbb{Z} , then f(x) = p(x)q(x). Since f is primitive, $\deg(p), \deg(q) > 1$. Thus f is also reducible over \mathbb{Q} . The other direction is a corollary of the second part.

2. If f(x) is reducible over \mathbb{Q} , then f(x) = p(x)q(x) for some $p(x), q(x) \in \mathbb{Q}[x]$ of smaller degree. Without loss of generality we can and will assume that f is primitive. Let $a, b \in \mathbb{N}$ such that $p_1(x) = ap(x) \in \mathbb{Z}[x]$ and $q_1(x) = bq(x) \in \mathbb{Z}[x]$. So

$$abf(x) = p_1(x)q_1(x).$$

By Gauss's Lemma, we have $ab = ab \cdot c(f) = c(abf(x)) = c(p_1q_1) = c(p_1)c(q_1)$. Hence $f = p_1/c(p_1) \cdot q_1/c(q_1)$, which shows that f is reducible over \mathbb{Z} .

4. Irreducibility test.

Modulo p might be easier to see if a polynomial is irreducible or not.

Theorem 9. Let $f(x) \in \mathbb{Z}[x]$ and p be prime. Let $\bar{f}(x) \in \mathbb{Z}/p\mathbb{Z}[x]$ be the polynomial obtained by the reducing modulo p. If $\deg(f) = \deg(\bar{f})$ and \bar{f} is irreducible, then f is irreducible over \mathbb{Q} .

Example 10. (1)
$$f(x) = (15/7)x^3 - (4/9)x^2 + x + (17/19)$$
.
(2) $f(x) = x^4 + 1$ is reducible over $\mathbb{Z}/p\mathbb{Z}$ for any p but it is irreducible over \mathbb{Z} .

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112

 $E ext{-}mail\ address: golsefidy@ucsd.edu}$