LECTURE 15.

ALIREZA SALEHI GOLSEFIDY

1. Evaluation map.

Let R be a subring of S. Then for any $s \in S$ and any polynomial $p(x) \in R[x]$ we can evaluate $p(s) \in S$. This gives us a nice homomorphism from R[x] to S.

Q: What is the kernel of the evaluation map?

A: By the definition, kernel consists of polynomials p(x) which vanish at s, i.e. $\{p(x) \in R[x] | p(s) = 0\}$.

Example 1. Let $f: \mathbb{R} \to \mathbb{C}$ be given as f(p(x)) := p(i). Then f is an onto homomorphism and $\ker(f) = \{p(x) | p(i) = 0\}$. We know that $\mathbb{R}[x]$ is a PID. So $\ker(f)$ is a principal ideal. We also know that it is generated by a non-zero polynomial of smallest degree in $\ker(f)$. By the definition, $x^2 + 1 \in \ker(f)$ and $\ker(f)$ does not contain any degree 0 and degree 1 polynomials. Hence $\ker(f) = \langle x^2 + 1 \rangle$. Thus by the isomorphism theorem we have

$$\mathbb{R}[x]/\langle x^2 + 1 \rangle \simeq \mathbb{C}.$$

Corollary 2. The ideal generated by $x^2 + 1$ in $\mathbb{R}[x]$ is a maximal ideal.

2. Irreducible polynomials.

Definition 3. A non-unit polynomial $f \in R[x]$ is called irreducible if f(x) = p(x)q(x) implies that either p(x) or q(x) is unit.

Example 4. Any prime element in \mathbb{Z} is an irreducible polynomial in $\mathbb{Z}[x]$.

Example 5. $x^2 + 1$ is an irreducible polynomial in $\mathbb{R}[x]$. But it is not irreducible over \mathbb{C} .

Proof. We know that the ideal generated by $x^2 + 1$ is maximal. So if $x^2 + 1 = p(x)q(x)$, then either p(x) or q(x) is a multiple of $x^2 + 1$. So one of them is of degree at least 2, which means the other one is of degree 0. But any degree 0 polynomial in $\mathbb{R}[x]$ is a unit.

Over
$$\mathbb{C}$$
, we have $x^2 + 1 = (x+i)(x-i)$ and neither $x+i$ nor $x-i$ are unit.

Lemma 6. Le F be a field. $f(x) \in F[x]$ is irreducible if and only if $\langle f(x) \rangle$ is a maximal ideal.

Proof. Let us assume that f(x) is irreducible and $\langle f(x) \rangle$ is not maximal. So there is a proper ideal I such that

$$\langle f(x) \rangle \subsetneq I \subsetneq F[x].$$

Since F[x] is PID, there is $h(x) \in F[x]$ such that $I = \langle h(x) \rangle$. As $f(x) \in I$, we have that f(x) = h(x)p(x) for some $p(x) \in F[x]$. Since f(x) is irreducible, either h(x) or p(x) is unit.

If h(x) is unit, then I = F[x], which is a contradiction.

If p(x) is unit, then $h(x) \in \langle f(x) \rangle$. This implies $\langle f(x) \rangle = I$ which is a contradiction.

Date: 2/15/2012.

1

Now assume that $\langle f(x) \rangle$ is a maximal ideal and f(x) = p(x)q(x). So $p(x)q(x) \in \langle f(x) \rangle$. Since $\langle f(x) \rangle$ is a maximal ideal, it is also a prime ideal. Thus either p(x) or q(x) is a multiple of f(x), which means one of them is of the same degree as f(x) and the other one is of degree 0 (Notice that f(x) cannot be zero!). Any degree 0 polynomial in F[x] is unit, which finishes the proof.

 ${\it Mathematics \ Dept, \ University \ of \ California, \ San \ Diego, \ CA \ 92093-0112}$

 $E ext{-}mail\ address: golsefidy@ucsd.edu}$