LECTURE 11.

ALIREZA SALEHI GOLSEFIDY

Last time we saw The Remainder Theorem:
Theorem 1. Let F be a field and $f(x) \in F[x]$. Then for any $a \in F$ there is a unique $g(x) \in F[x]$ such that

$$
f(x)=(x-a) g(x)+f(a)
$$

Corollary 2. Let F be a field and $f(x) \in F[x]$. Then a is a zero of f if and only if $x-a$ divides $f(x)$ (is a factor of $f(x)$).

Corollary 3. Let F be a field and $f(x) \in F[x]$. If $f(a)=0$, then there is a unique positive integer k and $g(x) \in F[x]$ such that

$$
f(x)=(x-a)^{k} g(x) \text { and } g(a) \neq 0 .
$$

Proof. By Corollary 2, $x-a$ is a factor of $f(x)$. Let

$$
k=\max \left\{i \mid(x-a)^{i} \text { is a factor of } f(x)\right\}
$$

Note that by Corollary $2 k$ is positive. Since $(x-a)^{k}$ is a factor of f, there is $g(x) \in F[x]$ such that

$$
f(x)=(x-a)^{k} g(x)
$$

Now we claim that $g(a) \neq 0$. Otherwise, $g(a)=0$ and so by Corollary $2, g(x)=(x-a) h(x)$ for some $h(x) \in F[x]$. Thus $f(x)=(x-a)^{k} g(x)=(x-a)^{k}(x-a) h(x)=(x-a)^{k+1} h(x)$, which means $(x-a)^{k+1}$ is also a factor of $f(x)$. But this contradicts the fact that k is the largest integer i such that $(x-a)^{i}$ is a factor of $f(x)$.
Uniqueness: If $f(x)=(x-a)^{k_{1}} g_{1}(x)=(x-a)^{k_{2}} g_{2}(x)$ and $g_{2}(a) \neq 0$ and $g_{1}(a) \neq 0$, then it is easy to show that

$$
k_{1}=k_{2}=\max \left\{i \mid(x-a)^{i} \text { is a factor of } f(x)\right\} .
$$

Now by the cancellation rule, we have $g_{1}(x)=g_{2}(x)$.
Corollary 4. Let F be a field and $f(x) \in F[x]$. Then f has at most $\operatorname{deg}(f)$ zeros in F (counting with multiplicity).

Proof. We proceed by strong induction. The base of the induction is easy.
Let $f \in F[x]$ and assume that the number of zeros of any polynomial g whose degree is strictly less than $\operatorname{deg}(f)$ is at most the degree of g.
If f has no zeros in F, then there is nothing to prove. Now assume that a is a zero of f. By Corollary 4 there is $g x\left(\in F[x]\right.$ such that $f(x)=(x-a)^{k} g(x)$ and $g(a) \neq 0$. Now if $b \neq a$ is a zero of f, then $0=f(b)=(b-a)^{k} g(b)$. So $g(b)=0$ (note that $b-a \neq 0$ and F has no zero-divisor). Hence

Number of zeros of $f=$ multiplicity of $a+$ number of zeros of f which are not equal to a

$$
=k+\text { number of zeros of } g \leq k+\operatorname{deg}(g)=\operatorname{deg}(f)
$$

Date: 2/6/2012.

Remark 5. If R has zero-divisors, then $f(x) \in R[x]$ might have more than $\operatorname{deg}(f)$ zeros. For instance $x^{2}-1 \in \mathbb{Z} / 8 \mathbb{Z}[x]$ has 4 zeros.

Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: golsefidy@ucsd.edu

