LECTURE 11.

ALIREZA SALEHI GOLSEFIDY

Last time we saw The Remainder Theorem:

Theorem 1. Let F be a field and $f(x) \in F[x]$. Then for any $a \in F$ there is a unique $g(x) \in F[x]$ such that f(x) = (x - a)g(x) + f(a).

Corollary 2. Let F be a field and $f(x) \in F[x]$. Then a is a zero of f if and only if x - a divides f(x) (is a factor of f(x)).

Corollary 3. Let F be a field and $f(x) \in F[x]$. If f(a) = 0, then there is a unique positive integer k and $g(x) \in F[x]$ such that

 $f(x) = (x-a)^k g(x)$ and $g(a) \neq 0$.

Proof. By Corollary 2, x - a is a factor of f(x). Let

 $k = \max\{i \mid (x-a)^i \text{ is a factor of } f(x)\}.$

Note that by Corollary 2 k is positive. Since $(x-a)^k$ is a factor of f, there is $g(x) \in F[x]$ such that

$$f(x) = (x-a)^k g(x).$$

Now we claim that $g(a) \neq 0$. Otherwise, g(a) = 0 and so by Corollary 2, g(x) = (x - a)h(x) for some $h(x) \in F[x]$. Thus $f(x) = (x - a)^k g(x) = (x - a)^k (x - a)h(x) = (x - a)^{k+1}h(x)$, which means $(x - a)^{k+1}$ is also a factor of f(x). But this contradicts the fact that k is the largest integer i such that $(x - a)^i$ is a factor of f(x).

Uniqueness: If $f(x) = (x-a)^{k_1}g_1(x) = (x-a)^{k_2}g_2(x)$ and $g_2(a) \neq 0$ and $g_1(a) \neq 0$, then it is easy to show that

$$k_1 = k_2 = \max\{i \mid (x - a)^i \text{ is a factor of } f(x)\}.$$

Now by the cancellation rule, we have $g_1(x) = g_2(x)$.

Corollary 4. Let F be a field and $f(x) \in F[x]$. Then f has at most deg(f) zeros in F (counting with multiplicity).

Proof. We proceed by strong induction. The base of the induction is easy.

Let $f \in F[x]$ and assume that the number of zeros of any polynomial g whose degree is strictly less than deg(f) is at most the degree of g.

If f has no zeros in F, then there is nothing to prove. Now assume that a is a zero of f. By Corollary 4 there is $gx (\in F[x]]$ such that $f(x) = (x - a)^k g(x)$ and $g(a) \neq 0$. Now if $b \neq a$ is a zero of f, then $0 = f(b) = (b - a)^k g(b)$. So g(b) = 0 (note that $b - a \neq 0$ and F has no zero-divisor). Hence

Number of zeros of f = multiplicity of a + number of zeros of f which are not equal to a

$$= k +$$
number of zeros of $g \le k + \deg(g) = \deg(f)$.

_	

Date: 2/6/2012.

ALIREZA SALEHI GOLSEFIDY

Remark 5. If R has zero-divisors, then $f(x) \in R[x]$ might have more than $\deg(f)$ zeros. For instance $x^2 - 1 \in \mathbb{Z}/8\mathbb{Z}[x]$ has 4 zeros.

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112

 $E\text{-}mail\ address:\ \texttt{golsefidy@ucsd.edu}$