LECTURE 11.

ALIREZA SALEHI GOLSEFIDY

1. Ring of polynomials.

For any ring R, we can consider the ring of polynomials R[x] with coefficients in R. So by the definition

$$R[x] := \{a_0 + a_1x + a_2x^2 + \dots + c_nx^n \ a_i \in R\},\$$

and two polynomials $p(x) := \sum_i a_i x^i$ and $\sum_j b_j x^j$ are called to be equal if (and only if) for any *i* we have $a_i = b_i$.

Warning: Though for any $p(x) \in R[x]$ we can and will talk about the value of p(a) for any $a \in R$, the ring of polynomials are not functions on R. The following example clarifies this point:

Example 1. Let $p(x) = x^3 - x \in \mathbb{Z}/3\mathbb{Z}[x]$. Then for any $a \in \mathbb{Z}/3\mathbb{Z}$ we have that p(a) = 0. But $p \neq 0$ as a polynomial.

Example 2. Let $p(x) = x^3 - x$, $q(x) = x^3 - 3x^2 + x \in \mathbb{Z}/3\mathbb{Z}[x]$. Then q(x) = p(x) as two polynomials.

Example 3. If R has characteristic p, where p is prime, then $(x + 1)^p = x^p + 1$.

Definition 4. Let $p(x) = \sum_{i} a_i x^i$. Let *n* be the largest integer such that $a_n \neq 0$, then *n* is called the degree of *p* and is denoted by deg(*p*). a_n is called the leading coefficient. a_0 is called the constant term. If the leading coefficient is one, *p* is called a monic polynomial. The degree of the zero polynomial is defined to be $-\infty$.

Lemma 5. Let R be an integral domain. Then $\deg(pq) = \deg(p) + \deg(q)$ and R[x] is also an integral domain.

Example 6. Lemma 5 does not hold for an arbitrary ring. For instance let p(x) = 2x + 1, $q(x) = 2x^2 + 3 \in \mathbb{Z}/4\mathbb{Z}[x]$. Then $\deg(pq) = 2 \neq \deg(p) + \deg(q)$.

Example 7. If R is an integral domain and char(R) = p where p is prime, then $(x+1)^{p-1} = \sum_{i=0}^{p-1} (-1)^i x^i$. Hence for any prime p and $0 \le i < p$, we have

$$\binom{p-1}{i} \equiv (-1)^i \pmod{p}.$$

By Lemma 5 R[x] is an integral domain. So it has cancellation property. On the other hand by Example 3 we have

$$(x+1) \cdot (x+1)^{p-1} = (x+1)^p = x^p + 1 = (x+1) \cdot (\sum_{i=0}^{p-1} (-1)^i x^i).$$

Theorem 8 (Division algorithm). Let F be field, $f(x), g(x) \in F[x]$. Assume that $g(x) \neq 0$. Then there are unique polynomials $q(x), r(x) \in F[x]$ such that

(1) f(x) = g(x)q(x) + r(x),(2) $\deg(r) < \deg(g).$

Date: 2/6/2012.

ALIREZA SALEHI GOLSEFIDY

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112

 $E\text{-}mail \ address: \verb"golsefidy@ucsd.edu"$