LECTURE 11.

ALIREZA SALEHI GOLSEFIDY

1. Ring of polynomials.

For any ring R, we can consider the ring of polynomials $R[x]$ with coefficients in R. So by the definition

$$
R[x]:=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+c_{n} x^{n} a_{i} \in R\right\}
$$

and two polynomials $p(x):=\sum_{i} a_{i} x^{i}$ and $\sum_{j} b_{j} x^{j}$ are called to be equal if (and only if) for any i we have $a_{i}=b_{i}$.

Warning: Though for any $p(x) \in R[x]$ we can and will talk about the value of $p(a)$ for any $a \in R$, the ring of polynomials are not functions on R. The following example clarifies this point:
Example 1. Let $p(x)=x^{3}-x \in \mathbb{Z} / 3 \mathbb{Z}[x]$. Then for any $a \in \mathbb{Z} / 3 \mathbb{Z}$ we have that $p(a)=0$. But $p \neq 0$ as a polynomial.

Example 2. Let $p(x)=x^{3}-x, q(x)=x^{3}-3 x^{2}+x \in \mathbb{Z} / 3 \mathbb{Z}[x]$. Then $q(x)=p(x)$ as two polynomials.
Example 3. If R has characteristic p, where p is prime, then $(x+1)^{p}=x^{p}+1$.
Definition 4. Let $p(x)=\sum_{i} a_{i} x^{i}$. Let n be the largest integer such that $a_{n} \neq 0$, then n is called the degree of p and is denoted by $\operatorname{deg}(p) . a_{n}$ is called the leading coefficient. a_{0} is called the constant term. If the leading coefficient is one, p is called a monic polynomial. The degree of the zero polynomial is defined to be $-\infty$.

Lemma 5. Let R be an integral domain. Then $\operatorname{deg}(p q)=\operatorname{deg}(p)+\operatorname{deg}(q)$ and $R[x]$ is also an integral domain.

Example 6. Lemma 5 does not hold for an arbitrary ring. For instance let $p(x)=2 x+1, q(x)=2 x^{2}+3 \in$ $\mathbb{Z} / 4 \mathbb{Z}[x]$. Then $\operatorname{deg}(p q)=2 \neq \operatorname{deg}(p)+\operatorname{deg}(q)$.

Example 7. If R is an integral domain and char $(R)=p$ where p is prime, then $(x+1)^{p-1}=\sum_{i=0}^{p-1}(-1)^{i} x^{i}$. Hence for any prime p and $0 \leq i<p$, we have

$$
\binom{p-1}{i} \equiv(-1)^{i} \quad(\bmod p)
$$

By Lemma $5 R[x]$ is an integral domain. So it has cancellation property. On the other hand by Example 3 we have

$$
(x+1) \cdot(x+1)^{p-1}=(x+1)^{p}=x^{p}+1=(x+1) \cdot\left(\sum_{i=0}^{p-1}(-1)^{i} x^{i}\right) .
$$

Theorem 8 (Division algorithm). Let F be field, $f(x), g(x) \in F[x]$. Assume that $g(x) \neq 0$. Then there are unique polynomials $q(x), r(x) \in F[x]$ such that
(1) $f(x)=g(x) q(x)+r(x)$,
(2) $\operatorname{deg}(r)<\operatorname{deg}(g)$.

[^0]Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: golsefidy@ucsd.edu

[^0]: Date: 2/6/2012.

