LECTURE 11.

ALIREZA SALEHI GOLSEFIDY

1. REVIEW OF AN EQUIVALENCE RELATION.

Definition 1 (Equivalence relation). A relation \sim on a set X is called an equivalence relation if it satisfies the following properties:

- (1) For any $x \in X$, $x \sim x$.
- (2) If $x \sim y$, then $y \sim x$.
- (3) If $x \sim y$ and $y \sim z$, then $x \sim z$.

Example 2. (1) The congruent relation on the triangles.

- (2) The mod m congruent relation on the set of integers, i.e. $a \sim b$ if and only if m|a-b.
- (3) If H is a subgroup of G, then $g_1 \sim_H g_2$ if $g_1^{-1}g_2 \in H$ is an equivalence relation on G.

Definition 3 (Equivalence class). Let \sim be an equivalence relation on X. The equivalence class of $x \in X$ is

$$\{y \in X | \ x \sim y\}$$

and it is denoted by $[x]_{\sim}$.

Lemma 4. Let \sim be an equivalence relation on X. Then

- (1) $X/\sim:=\{[x]_{\sim}|x\in X\}$ is a partition of X.
- (2) $[x]_{\sim} = [x']_{\sim}$ if and only if $x \sim x'$.

Remark 5. One can view X/\sim as a set created after gluing points which are equivalent to each other (with respect to \sim). In some sense, we are putting some new glasses on and from this new point of view there is no distinction between two elements that are equivalent to each other.

Example 6. (1) G/H is the same as G/\sim_H , where \sim_H is defined in the previous example.

(2) Let \sim be the following relation on [0,1], for any $x \in [0,1]$ $x \sim x$ and $0 \sim 1$ and $1 \sim 0$. Then \sim is an equivalence relation and $[0,1]/\sim$ can be identified with a circle.

2. Field of quotients.

Any unital subring of a field is an integral domain. Its inverse is also correct:

Theorem 7. Let R be an integral domain. Then there is a field F (called the field of quotients of R) that contains R and moreover, if R is a subring of a field E, then F can be also embedded into E.

Proof. Construction of the set: Let $\mathcal{F} = R \times (R \setminus \{0\})$ and \simeq be the following equivalence relation on \mathcal{F} : $(a,b) \sim (c,d)$ if and only if ad = bc.

Now let $F = \mathcal{F}/\sim$. (You have to view $[(a,b)]_{\sim}$ as a/b in the set of rational numbers!)

Operations: We define the following operations on F:

$$[(a,b)]_{\sim} + [(c,d)]_{\sim} := [(ad+bc,bd)]_{\sim},$$

Date: 2/6/2012.

1

and

$$[(a,b)]_{\sim} \cdot [(c,d)]_{\sim} := [(ac,bd)]_{\sim}.$$

One can check that these are well-defined and $(F, +, \cdot)$ is a ring. Here we just check why the addition is well-defined:

Assume that $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. We have to show $(ad+bc,bd) \sim (a'd'+b'c',b'd')$. So we have ab'=ba' and cd'=c'd,

$$(ad + bc)(b'd') = ab'dd' + bb'cd' = a'bdd' + bb'c'd = (a'd' + b'c')(bd).$$

Field: F is a unital ring and any non-zero element is a unit. First we notice that $[(0,1)]_{\sim}$ is the zero in F and $[(1,1)]_{\sim}$ is the one in F. Now one can check that $[(a,b)]_{\sim}$ is zero if and only if a=0. Hence if $[(a,b)]_{\sim}$ is not zero, then $[(b,a)]_{\sim}$ is also in F. On the other hand, $[(a,b)]_{\sim} \cdot [(b,a)]_{\sim} = [(ab,ab)]_{\sim} = [(1,1)]_{\sim}$.

F contains R: It is easy to show that the map $f: R \to F$ given by

$$a \longmapsto [(a,1)]_{\sim},$$

is an injective ring homomorphism.

F is the smallest field which contains R: Let E be a field which contains R. It is enough to check the map $g: F \to E$ given by

$$q([(a,b)]_{\sim}) := ab^{-1},$$

is an injective ring homomorphism.

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112

 $E ext{-}mail\ address: golsefidy@ucsd.edu}$