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Chapter 1

Combinatorial and
Number Theoretic
Motivation

1.1. Additive combinatorics and topological
dynamics

Ramsey Theory, named after the English mathematician Frank P.
Ramsey, is the study of “large” structures that are preserved under
partitions. If a space with an organized structure on it is subdivided
into finitely many pieces, then at least one of these pieces still has
an organized structure. There is no restriction how many pieces are
used, other than that this number be finite, and there is no restriction
on exactly how the subdivisions are created. Behind these patterns
that persist under divisions is some notion of largeness. Any ‘large’
set contains the organized structure, and furthermore contains ‘many’
of these organized structures. However, the meanings of ‘large’ and
‘many’ change with each problem. Possible spaces include groups,
semigroups, vector spaces and graphs, and the structures can be any
sort of pattern in the space.

The simplest such result is the Pigeonhole Principle: if n pigeons
are placed into m pigeonholes, then so long as n > m, at least one
pigeonhole contains 2 pigeons. Placing this in a slightly more general
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2 1. Combinatorial and Number Theoretic Motivation

context of subdivisions, if a set with rn + 1 elements is divided into
r pieces, then some piece contains at least n + 1 elements. Ramsey
Theory expands upon this simple observation.

The original Ramsey Theorem dealt with graphs and partitions
of the edges of graphs. We restrict ourselves to the narrower context
of additive combinatorics. The basic objects are sets of natural num-
bers and the basic questions are about these sets and their structures.
Rather than algebraic properties of the natural numbers, we are con-
cerned with properties that are more quantitative and combinatorial.

Partitioning N into finitely many subsets amounts to giving each
n 2 N a label from a prescribed set of labels. It turns out that some

subset contains many di↵erent patterns. For example, there are two
numbers a and b in the same subset, whose sum a+ b also lies in the
same subset. Furthermore, there exist three numbers a, b and c in
the same subset such that a + b = 2c. (The precise statements are
given in Theorems 1.2 and 1.4.) The strength and beauty of such
statements lie in the fact that we have made minimal assumptions,
and yet we have strong conclusions: neither the number of subsets nor
the mode of dividing up the numbers is limited, and yet at least one
of the subsets contains specific structures. The downside is that the
conclusion is only an existence statement: the desired pattern occurs
in some subset, but we have no control over which subset contains
the pattern.

Many of the original proofs in Ramsey Theory were combinato-
rial, with the Pigeonhole Principle and vast generalizations of it used
in very intricate and subtle ways. We take a di↵erent approach to the
problems, first translating a combinatorial problem into a problem in
dynamical systems and then using techniques in dynamical systems
to solve the reformulated problem. This beautiful connection between
dynamics and Ramsey Theory was developed in the 1970’s by Hillel
Furstenberg and the connection has been elaborated upon by many
others.

A dynamical system is a way of describing how one state evolves
into another. The original motivation was Newtonian mechanics, the
study of planetary motion around the sun. In Newtonian mechanics,
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a state is the positions and momentums of the planets. One can study
the changes in these positions and momentums.

Dynamical systems can be defined with di↵erent properties on
the underlying space and on the map defining the evolution of the
states. We restrict ourselves to topological properties, which is the
field of topological dynamics. For example, each planet returns to the
same point after a certain amount of time, and this periodicity is a
topological property.

The typical setting we consider is a compact metric space X with
a continuous transformation T : X ! X. (The reader unfamiliar with
metric spaces is advised to read the Appendices before proceeding on
to Chapter 2.) Repeated applications, or iterations, of the transfor-
mation T represent the evolution of the dynamical system. These
iterations correspond to the positive integers: applying the transfor-
mation n times to X corresponds in a sense (to be made precise later)
to the integer n. To understand properties of the natural numbers
under partition, we instead study properties of the iterations of T .

In the process of developing the tools in topological dynamics, we
also gain the tools to understand results of a di↵erent nature in a dif-
ferent area of number theory, the field of Diophantine approximation.
(The name Diophantine is after the Greek mathematician Diophan-
tus from the third century.) The basic problem is to approximate
real numbers by rational numbers. More precisely we want to closely
approximate a real number by a rational number whose denominator
has certain properties. Many of these number theoretic results are
over a hundred years old, although the dynamical proofs are much
more recent.

1.2. Coloring Theorems

We start with a definition that captures the idea of subdividing a
space.

Definition 1.1. A finite partition of a set X is a (finite) collection
of sets C1, C2, . . . , Cr such that

• X = C1 [ C2 [ . . . [ Cr

• Ci \ Cj = ? for i, j 2 {1, 2, . . . , r} with i 6= j .
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In many examples we consider, X is either the natural numbers
N = {1, 2, 3, . . .} or the integers Z = {. . . ,�2,�1, 0, 1, 2, . . .}. One
can partition N into two pieces by taking the evens {2, 4, 6, . . .} and
the odds {1, 3, 5, . . .}, or by taking the perfect squares {1, 4, 9, . . .}
and the complement. Or the rule determining the partition could be
probabilistic, for example, tossing a coin or rolling a die to determine
in which piece of a partition a number should be placed.

One of the earliest examples of a pattern that is preserved under
finite partitions is due to Issai Schur:

Theorem 1.2. If N = C1 [ C2 [ . . . [ Cr is a finite partition, then

for some j 2 {1, 2, . . . , r}, there exist a, b, c 2 Cj with a+ b = c.

The triple in the conclusion of the theorem is called a Schur triple.

Combinatorists often use more pictorial terminology for such the-
orems. Assign each piece of the finite partition a di↵erent color. Then
we refer to a partition of the natural numbers N (or of a more general
semigroup) into r pieces as a coloring of N (or of the semigroup) with
r colors, and call this more succinctly an r-coloring. One can thus
view an r-coloring of N as a function f : N ! {1, 2, . . . , r}. Extending
the language of colorings, elements in the same partition piece are
said to be monochromatic. Thus a set A is monochromatic if there
is a fixed j 2 {1, 2, . . . , r} such that f(n) = j for all n 2 A. Schur’s
Theorem can now be reformulated: for each r 2 N, any r-coloring of
N contains a monochromatic Schur triple.

Schur’s original proof used techniques from number theory. The
proof we give uses topological dynamics, meaning that we translate
Schur’s statement about patterns persisting under partitions into a
statement about points in a compact metric space returning close to
themselves under iteration. Then we prove the new statement using
topological dynamics. This is carried out in Section ??.

Schur’s Theorem can be reformulated in a finite version. So long
as a subset of the natural numbers is su�ciently large, the conclusion
of Schur’s Theorem already holds:

Theorem 1.3. Given r 2 N, there exists a positive integer N =
N(r) such that if {1, 2, . . . , N} = C1 [ C2 [ . . . [ Cr, then for some

j 2 {1, 2, . . . , r}, Cj contains a, b, c with a+ b = c.
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It is easy to see that Theorem 1.3 implies Theorem 1.2: if there
is a monochromatic Schur triple in any coloring of the first N natural
numbers, then certainly there is a monochromatic Schur triple in any
coloring of all natural numbers. More important is that the converse
also holds. Suppose not. Then for each N 2 N, there is a coloring of
{1, 2, . . . , N} with r colors that does not contain any monochromatic
Schur triple. Use any of the r colors to color the integers {N +1, N +
2, . . .}, thus extending each coloring of {1, 2, . . . , N} to a coloring of N
with r colors. Thus for each N 2 N, we have a corresponding coloring
of N. Since only finitely many colors were used, by the Pigeonhole
Principle there are infinitely many N 2 N such that the corresponding
coloring uses the same color for the integer 1. Consider only this
subsequence of colorings and note that we are still left with an infinite
set of colorings. We can now repeat this process in this subsequence.
By passing to a subsequence, if necessary, we can assume that all the
colorings use the same color for the integer 2. Inductively, we can
pass to a subsequence of the original list of colorings that fixes each
n 2 N with a single color. Taking the limit along this subsequence, we
obtain a coloring of N that does not contain a monochromatic Schur
triple, a contradiction.

This equivalence between statements about the natural numbers
and statements about su�ciently large subsets is a general phenom-
enon: combinatorial statements about the natural numbers can be
reformulated into statements about su�ciently large finite sets.

Schur conjectured that finite colorings of the integers had a finer
combinatorial structure. Namely, he conjectured that any such col-
oring contains monochromatic arithmetic progressions of arbitrary
length. An arithmetic progression of length k 2 N is defined to be a
sequence of the form a, a+b, a+2b, . . . , a+(k�1)b for some a, b 2 N.
We call b the common di↵erence of the arithmetic progression. For
example, 9, 16, 23, 30, 37 is an arithmetic progression of length 5 with
common di↵erence 7. Schur’s conjecture was proved by Bartel Leen-
dert van der Waerden:

Theorem 1.4. If N = C1 [ C2 [ . . . [ Cr is a finite partition, then

for some j 2 {1, 2, . . . , r}, Cj contains arbitrarily long arithmetic

progressions.
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As was the case for Theorem 1.2, there is an equivalent finite for-
mulation of van der Waerden’s Theorem (Exercise 8.1). Given r col-
ors, finding the boundN(r, k) such that any r-coloring of {1, 2, . . . , N}

withN > N(r, k) contains a monochromatic arithmetic progression of
length k is a di�cult problem that has attracted the attention of many
mathematicians. Unfortunately, methods of topological dynamics do
not seem to give any insight into this problem.

Techniques from topological dynamics also can be used to prove
coloring theorems on spaces other than the natural numbers or the
integers. One such example is the geometric Ramsey Theorem. The
object being partitioned is now an infinite dimensional vector space
and the pattern that can always be found is an a�ne subspace, a
translate of a vector subspace. (See Appendix B.2 for the terminol-
ogy.)

Theorem 1.5. Let F be a finite field, V an infinite dimensional

vector space over F and r 2 N. If V = C1 [ C2 [ . . . [ Cr is a finite

partition, then for some j 2 {1, 2, . . . , r}, Cj contains a�ne subspaces

of arbitrarily large finite dimension.

To state the next coloring theorem, we need some notation. Let
⇤ denote a finite alphabet, meaning that ⇤ is a finite collection of
symbols. We denote the number of elements in ⇤ by |⇤|. The elements
of ⇤ are called the letters of the alphabet and a word of length N is
an ordered set of N letters. For example, if ⇤ is the alphabet with
the 5 letters {1, 2, 3, 4, 5}, then 452213 is a word of length 6 in ⇤.

Let WN (⇤) denote the words of length N using the alphabet ⇤.
Assume that ⇤ does not contain the letter x. Let W ⇤

N (⇤[{x}) denote
the words of length N in the expanded alphabet ⇤[{x} in which the
letter x occurs in every word at least once. Thus

W

⇤
N (⇤ [ {x}) = WN (⇤ [ {x}) \WN (⇤) .

In the example with ⇤ = {1, 2, 3, 4, 5}, 2153111 is a word in W7(⇤)
and 2x53xx1 is a word in W

⇤
7 (⇤ [ {x}).

We refer to an element ofW ⇤
N (⇤[{x}) as a function f(x) mapping

⇤ into WN (⇤). Thus f(x) = 2x53xx1 is a function in W

⇤
7 (⇤ [ {x}).
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Evaluating f over the alphabet ⇤, we have:

f(1) = 2153111

f(2) = 2253221

f(3) = 2353331

f(4) = 2453441

f(5) = 2553551 .

For a function f(x) with coe�cients in the alphabet ⇤, we refer to
{f(�) : � 2 ⇤} as a combinatorial line. A combinatorial line is nat-
urally viewed as a matrix, with the words in the line becoming the
rows of the matrix. Thus the previous example becomes:

0

BBBB@

2 1 5 3 1 1 1
2 2 5 3 2 2 1
2 3 5 3 3 3 1
2 4 5 3 4 4 1
2 5 5 3 5 5 1

1

CCCCA

One of the most fundamental result of Ramsey Theory is the
following theorem, due to Alfred Hales and Robert Jewett:

Theorem 1.6. Let ⇤ be a finite alphabet not containing the letter x

and let r 2 N. There exists a positive integer N(r, |⇤|) such that if

N � N(r, |⇤|), then for any finite partition WN (⇤) = C1 [C2 [ . . .[

Cr, there exists f(x) 2 W

⇤
N (⇤ [ {x}) and j 2 {1, 2, . . . , r} such that

the combinatorial line {f(�) : � 2 ⇤} belongs entirely to Cj.

Theorem 1.6 is stronger than both Theorem 1.4 and Theorem 1.5.
To see the first statement, view the alphabet ⇤ as a vector space over
a finite field and for the second, use the letters of ⇤ to write numbers
in a given base. The details are left to Exercise 12.1.

Thus far, all the theorems stated show the existence of some finite
configuration in a su�ciently large set. However, one can generalize
Theorem 1.2 in a di↵erent way and find certain infinite configurations.
We start with a definition.

Definition 1.7. A subset A ⇢ N is an IP-set if there exists a sequence
of positive integers p1, p2, . . . such that

A = {pi1 + pi2 + . . .+ pik : k 2 N and i1 < i2 < . . . < ik} .
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The integers p1, p2, . . . are called the generators of the IP-set.

Thus starting with an infinite set of generators, the set of all pos-
sible finite sums of distinct generators form an IP-set. The name IP,
amusingly enough, has two di↵erent interpretations. The generators
can be interpreted geometrically, as the coordinates of parallelepipeds
and so the IP set itself is an infinite parallelepiped. On the other hand,
IP sets correspond to idempotents in a certain abstract system that
can be built out of the integers (Section 14.1). Taking the I and P
from idempotent also gives IP.

For example, the set of all multiples of 10 is an IP-set, by taking
the generators {10, 10, 10, . . .}. A more interesting example is the set
of all numbers that can be written with only 0’s and 1’s, obtained
using the generators {1, 10, 100, . . .}.

Neil Hindman showed:

Theorem 1.8. Let r > 0 be an integer. If N = C1 [ C2 [ . . . [ Cr

is a finite partition, then for some j 2 {1, 2, . . . , r}, Cj contains an

IP-set.

Hindman’s Theorem has an equivalent formulation in terms of
subsets of the natural numbers (see Exercise 12.3):

Theorem 1.9. If F is the collection of all finite subsets of N and

F = C1[C2[ . . .[Cr is a finite partition, then there is a sequence of

disjoint sets ↵1,↵2, . . . such that all finite unions ↵i1 [↵i2 [ . . .[↵ik

lie in some Cj for some j 2 {1, 2, . . . , r}.

These examples illustrate a general principle of Ramsey Theory:
some patterns are indestructible under finite partition. These are
only a few of the examples of spaces and patterns on them that are
preserved under arbitrary partitions.

1.3. Diophantine Approximation

Our second application of topological dynamics belongs to number
theory. A basic question is how well one can use rational numbers Q
to approximate real numbers R. One of the simplest examples was
proved by Leopold Kronecker:
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Theorem 1.10. Assume that ↵ /2 Q and � 2 R. Then for all ✏ > 0,
there exist integers n and m such that |n↵� � �m| < ✏.

We reformulate this theorem in a more analytic manner:

Definition 1.11. A set A is dense in an interval [x, y] ✓ R if for all
✏ > 0, any subinterval of [x, y] with length ✏ contains some element
a 2 A.

Kronecker’s Theorem is equivalent to saying that the sequence

{n↵ mod 1: n 2 Z}

is dense in [0, 1] (Exercise 3.9).

More generally, Kronecker showed that one can simultaneously
approximate a finite set of irrationals under a simple necessary hy-
pothesis.

Definition 1.12. The numbers ↵1,↵2, . . . ,↵k are rationally indepen-

dent if the only solution to

a1↵1 + a2↵2 + . . .+ ak↵k = 0

with a1, a2, . . . , ak 2 Z is a1 = a2 = . . . = ak = 0.

Kronecker showed:

Theorem 1.13. Assume that ↵1,↵2, . . . ,↵k are rationally indepen-

dent, �1, �2, . . . , �k 2 R and ✏ > 0. Then there exist integers n and

m1,m2, . . . ,mk such that |n↵j � �j �mj | < ✏ for j = 1, 2, . . . , k.

Herman Weyl extended this, showing that the approximations
can be made with polynomial expressions:

Theorem 1.14. Assume that p(x) is a polynomial with real coe�-

cients and that at least one coe�cient other than the constant term

is irrational. Then for all ✏ > 0, there exist integers n and m such

that |p(n)�m| < ✏.

To formulate our last Diophantine result, we need one more def-
inition:

Definition 1.15. The positive integers p, q 2 N are multiplicatively

independent if they are not both powers of a single integer.
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Thus the pairs 2, 3 and 2, 6 are multiplicatively independent,
while the pairs 3, 9 and 4, 8 are not.

Furstenberg showed:

Theorem 1.16. Assume that p, q > 1 are multiplicatively indepen-

dent integers. Then for any irrational ↵,

{p

m
q

n
↵ mod 1: m,n 2 N}

is dense in [0, 1].

Although at first glance this seems to di↵er from the other Dio-
phantine results considered, it is of a similar nature. Namely, Theo-
rem 1.16 means that any irrational can be approximated arbitrarily
well by rationals whose denominator is of the form p

m
q

n for some
m,n 2 N.

1.4. Complexity and periodicity

The field of topological dynamics has its origins in the work of George
Birkho↵. Closely related is the field of symbolic dynamics, and this
plays a major role in the translation of the combinatorial problems
into dynamical ones. There are numerous other combinatorial prop-
erties of systems that arise, and we discuss a few of these (see Chap-
ter 6).

If A is a finite set of symbols, called the alphabet, we can consider
bi-infinite sequences in this alphabet, called the words in the alphabet.
Words are elements of the space A

Z and we can write a word ⌘ 2 A

Z

as ⌘ = (⌘n){n2Z}.

A word ⌘ 2 A

Z is said periodic if there exists m 2 N such that
⌘n = ⌘n+m for all n 2 Z.

For n 2 N, we define the complexity function P⌘(n) to be the
number of distinct patterns of length n contained in ⌘. Marston
Morse and Gustav Hedlund showed that complexity and periodicity
are closely related:

Theorem 1.17. A word ⌘ 2 A

Z
is periodic if and only if there exists

n0 2 N such that P⌘(n0)  n0.
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While this completely characterizes sequences with sub-linear growth,
there is a wide area of research on sequences whose complexity P⌘(n) �
n + 1 for all n 2 N. Sequences that achieve this minimum, meaning
that P⌘(n) = n + 1 for all n 2 N, are called Sturmian sequences and
are well understood. Sequences with higher complexity are less well
understood.

One can formulate analogous notions of periodicity and complex-
ity in higher dimensions, and such results are further considered in
Section 6.

Notes

The breakthrough paper of Furstenberg [25] establishing the connection
between dynamics and additive combinatorics proved a generalization of
van der Waerden’s Theorem originally proven via combinatorial means by
Szemerédi [60]. Szemerédi’s Theorem states that if A ⇢ N has positive

upper density, meaning that lim sup
N!1

|[1,...,N ]\A|
N

> 0, then A contains
arbitrarily long arithmetic progressions. (Note that |S| represents the car-
dinality of the set S.) Szemerédi’s Theorem was conjectured by Erdős and
Turán [20], who sought to explain the phenomenon of van der Waerden’s
Theorem (Theorem 1.4). In any finite partition of N, some piece triv-
ially has positive upper density and so van der Waerden’s Theorem follows
immediately from Szemerédi’s Theorem. Although Furstenberg’s proof of
Szemerédi’s Theorem is dynamical in nature, we do not cover it in this
book, as it requires the added strength of ergodic theory.

The first proofs using topological dynamics of many of the combinato-
rial statements we study, including Theorems 1.2, 1.4, and 1.9, were given
by Furstenberg and Weiss [30]. An excellent, more advanced treatment on
these connections is [27]. Theorem 1.2 was first proved by Schur [57], and
the motivation was Fermat’s Last Theorem. He showed that for all n 2 N,
if p is a su�ciently large prime then the equation xn + yn = zn has a
nontrivial solution mod p. Theorem 1.4 was proved by van der Waerden
in [61]. Van der Waerden first heard this conjectured by Baudet, and so
it is sometimes referred to as Baudet’s conjecture, but it seems that it was
originally conjectured by Schur (see [58]). The problem of finding bounds
for N(r, k) in van der Waerden’s Theorem has received a great deal of at-
tention, including work of the logician Shelah [59] and the Fields medalist
Gowers [31].

A generalization of van der Waerden’s Theorem by Schur and Brauer
was given in [9]. They showed that for any finite coloring of the integers,
not only can one find a monochromatic arithmetic progression of arbitrary
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length, but one can also guarantee that the common di↵erence of the arith-
metic progression has the same color as the progression itself. The ultimate
result generalizing these theorems was proved by Rado [48]. The precise
statement of this theorem, as well as a multidimensional version of van der
Waerden’s Theorem due to Gallai is in Chapter 9. Although Gallai, also
known in the literature by the name Grünwald, seems never to have pub-
lished the result, Rado [49] attributes the result to him (but states that he
gives a di↵erent proof than the original one).

The geometric Ramsey Theorem (Theorem 1.5) was first proven by
Graham, Leeb, and Rothschild [32]. A dynamical proof was given by
Furstenberg and Katznelson [28], which includes this as a corollary of a
strengthening of a result of Carlson [14].

Theorem 1.6 was proven by Hales and Jewett [34]. A density version
(again requiring the added strength of ergodic theory and so not addressed
in this book) was proven by Furstenberg and Katznelson [29]. At this time,
no combinatorial proof is known for this density version.

Hindman’s proof of Theorems 1.9 and 1.8 was a major breakthrough,
resolving a long standing conjecture. A dynamical proof appears in [30].

A good resource for Diophantine approximation is Hardy andWright [36],
which contains a proof of Theorems 1.10 and 1.13. Theorem 1.14 was
proven by Weyl [63] and dynamical proofs are contained in [27].

Weyl proved a stronger statement on the equidistribution of values of
a polynomial, showing that not only are the values of the fractional part
of p(n) dense in [0, 1], but that they are evenly distributed throughout the
unit interval. We omit the precise statement, as its proof relies on the
added strength of techniques from ergodic theory.

Theorem 1.16 was proven in the seminal paper [24].

Morse and Hedlund introduced symbolic systems and the complexity
functions in [43], giving a formulation of Theorem 1.17. In [44], they gave
characterizations of Sturmian sequences.



Chapter 2

Dynamical Systems

2.1. Basic examples and definitions

The setting we consider is a compact metric space1 X endowed with a
continuous transformation T : X ! X. We assume that the topology on
X is compatible with the metric, meaning that the open sets of X are
determined by the metric.

There may also be more than one mapping on the space X. If T : X !
X and S : X ! X are continuous transformations mappingX to itself, then
the compositions T � S : X ! X and S � T : X ! X are also continuous
transformations mapping X to itself. Thus we may also consider a semi-
group (under composition) of transformations on the compact space. If
each transformation in this semigroup is also invertible, we have a group
of transformations mapping X to itself. We make these notions precise.

Definition 2.1. A dynamical system is a pair (X,G), whereX is a compact
metric space and G is a semigroup of continuous transformations mapping
X to itself.

Often we assume the transformations in G are invertible, in wich case
G is a group of continuous transformations mapping X to itself. The im-
portant point is that since T maps X to itself, we can repeatedly apply T

1More generally, one could consider a compact topological space endowed with
a continuous transformation, and most of the results proven here hold in this more
general setting. However, to minimize the technical considerations, we assume the
extra structure that comes with the metric and use exercises to indicate how many
of the proofs can be carried out in the more general setting. The reader unfamiliar
with the notions of a topology and compactness should study the appendices before
proceeding with this chapter.

13



14 2. Dynamical Systems

to X. The long term behavior of these repeated applications is the main
focus of the study of dynamics systems.

By T 0, we mean the identity map T 0(x) = x. For n � 1, we define

Tn(x) = T (Tn�1(x)).

Notation 2.2. While this notation is standard in dynamics, it di↵ers from
other standard uses of similar notation in other fields. Throughout this
book, Tn does not denote the map T raised to the nth power, nor does it
denote the nth derivative of the map T , but is always the map T applied
n times.

When the transformations acting on X are generated by a single trans-
formation T , we use the convention of denoting the dynamical system by
(X,T ) instead of listing all the maps generated by T that act on X. We use
the common convention of omitting parentheses and writing Tx instead of
T (x).

We start with some simple examples of dynamical systems; the reader
should check that each transformation given is continuous.

Example 2.3 (Identity). If X is any space, define the identity transforma-
tion Id : X ! X by Id(x) = x for all x 2 X. Then (X, Id) is a dynamical
system. Repeated applications of Id leave each x 2 X unchanged.

Example 2.4 (Circle rotation). Define an equivalence relation ⇠ on the
real numbers R, by setting two points to be in the same equivalence class
if they di↵er by an integer. Thus x ⇠ y when x � y 2 Z. We write [x] for
the equivalence class of x 2 R:

[x] = {y 2 R : x� y 2 Z}.
This means that the equivalence class of 0 (or of any other integer) is Z,
and the equivalence class of any x 2 R is {x + z : z 2 Z}. Since each
equivalence class has a natural representative in [0, 1), we can identify the
set of all equivalence classes X = R/Z = {[x] : x 2 R} with the compact
interval [0, 1], where the points 0 and 1 are identified. One can check
that this space is compact (Exercise 2.1). It is traditional to denote this
presentation of the circle as T = R/Z, viewing it as a 1-torus.

The metric on T is induced from the natural (Euclidean) metric on R:
define the distance between x 2 T and 0 to be min{x, 1�x}, and denote this
distance by kxk. More generally, for x, y 2 T, define the distance kx � yk
between x and y to be the distance between x � y and 0. Equivalently,
kx�yk = min{|x�y|, 1� |x�y|}. This distance (see Exercise 2.1) is called
the distance to the nearest integer. In terms of the representation of T as
equivalence classes, the distance between the classes [x] and [y] is defined
to be min{|x0 � y0| : x0 2 [x], y0 2 [y]}.
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Because of the identification of the endpoints 0 and 1 in the interval
[0, 1], it is natural to view the interval [0, 1] as a circle of radius 1 in R2,
centered around the origin: a point x 2 [0, 1] corresponds to the point on
the circle at an angle 2⇡x.

 




0 1

x

0

Figure 1. A point x in the interval [0, 1] corresponds to a
point x on the circle.

A natural group operation on T is addition modulo 1 and so we use
additive notation. Let ↵ 2 [0, 1) and define T : T ! T by

T (x) = (x+ ↵) mod 1.

Because of the natural association of T with the circle of radius 1, the map
T is called the rotation by ↵. Then (T, T ) is a dynamical system. If ↵ /2 Q,
we call this an irrational rotation of the circle, and if ↵ 2 Q we call this a
rational rotation of the circle. Applying the transformation T n times to
T, we obtain

Tn(x) = (x+ n↵) mod 1

for any n 2 N. This also makes sense for negative n, as the inverse map
T�1 is defined by

T�1(x) = (x� ↵) mod 1

and more generally

T�n(x) = (x� n↵) mod 1.

This example can be generalized to a more abstract setting:

Example 2.5 (Kronecker system). Assume thatX is a compact metrizable
group. (Thus X is a compact space with a group structure on it such
that the group multiplication and taking of inverses are continuous; see
Appendix B.1.) Let a 2 X be a fixed element. Define T : X ! X by
Tx = ax. Note that we have not assumed that X is abelian, and so unlike
the particular case of the circle, we use multiplicative notation. Since we
assumed that X is a group, the transformation T gives rise to a group of
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continuous transformations on X, given by Tn(x) = anx for any n 2 Z.
(Note that T 0 is the identity transformation.) Thus (X, {Tn : n 2 Z})
is a dynamical system. In analogy with the circle rotation, we call the
transformation T a rotation. Since the whole system is generated by the
single transformation T , we denote the system by (X,T ). Such a system
is called a Kronecker system.

Example 2.6 (Isometry). If X is a compact metric space and T : X ! X
is an isometry, meaning that d(Tx, Ty) = d(x, y) for all x, y 2 X, then
(X,T ) is a dynamical system. (It follows immediately from the definition
that T is continuous.) A circle rotation is an example of an isometry.

Given a dynamical system (X,G), we say that the transformations in
G act on X. When we wish to emphasize that each transformation in G is
continuous, we say that G acts continuously on X. In many applications,
G is either Z or N [ {0}. For example, if T acts on the space X, then so
do the transformations T 0 = Id, T 1 = T, T 2, T 3, . . .. Since the exponents
of these transformations are 0, 1, 2, . . . are exactly N [ {0}, it is natural to
think of the semigroup N [ {0} acting on X. This semigroup is generated
by the single element 1 and the transformations acting on X are generated
by the single transformation T .

If T is invertible, the group of transformations acting on X is

{. . . , T�2, T�1, T 0, T 1, T 2, . . .}.
Again, the transformation T 0 is the identity map and the transformation
T 1 = T . This time, the group of transformations is in one to one corre-
spondence with Z, as the set of possible exponents for T are exactly the
group Z.

Dynamical systems with an invertible transformation are given a par-
ticular name:

Definition 2.7. A homeomorphism is a continuous, one-to-one transfor-
mation whose inverse is also continuous. A dynamical system (X,G) with
each T 2 G a homeomorphism is called an invertible dynamical system.

Often we make further assumptions on the space X. For our goals
it generally su�ces to assume that X is metrizable, and if there is no
ambiguity as to which metric is meant, the distance on X is denoted by d.
If more than one space is relevant or we want to emphasize the space X,
we denote the metric associated to the space X by d

X

.

2.2. Distinguishing dynamical systems

In order to understand dynamical systems, we need a language to describe
the systems, and we need ways in which to distinguish if two systems are



2.2. Distinguishing dynamical systems 17

the same. Primary tools for this are topological properties of a dynamical
system, meaning those that are preserved under certain mappings from one
system to another.

Definition 2.8. Assume that (X,T ) and (Y, S) are dynamical systems.
A homomorphism from (X,T ) to (Y, S) is a continuous map ⇡ : X ! Y
satisfying

⇡(Tx) = S(⇡x) for all x 2 X.

We say that the homomorphism ⇡ preserves the dynamics. Pictorially,
we can think of ⇡ as a map that makes the following diagram commute:

X
T��! X

# ⇡ # ⇡

Y
S��! Y

Thus one passes from the system (X,T ) to the system (Y, S) by a contin-
uous change of coordinates.

This diagram is not symmetric, in the sense that some information
about X can be lost in using ⇡ to pass from X to Y . We clarify the
distinct roles that X and Y play:

Definition 2.9. A topological semiconjugacy is a surjective homomorphism
⇡ : X ! Y , and if such a map exists, we say that (X,T ) and (Y, S) are
topologically semiconjugate. If ⇡ is a homeomorphism, meaning that it is
a surjective homomorphism that is also invertible and has a continuous in-
verse, it is called a topological conjugacy, and we say that (X,T ) and (Y, S)
are topologically conjugate. A topological conjugacy is also referred to as
an isomorphism, and we can also say that the two systems are isomorphic.

While a topological semiconjugacy between the systems (X,T ) and
(Y, S) is not a symmetric relation, a topological conjugacy is. We usually
omit the word topological and just write conjugacy or semiconjugacy.

Example 2.10 (Circle rotation, revisited). We give another presentation
of the circle rotation, isomorphic to that in Example 2.4. Consider the set

S1 ⇢ C = {z = x+ iy : |z|2 = x2 + y2 = 1} ⇢ C.

This is the complex presentation of the unit circle, where multiplication is
the natural operation (rather than addition). Each point on this circle has
modulus 1, and so each point can be uniquely written as e2⇡i✓ for some
✓ 2 [0, 1). Assume that T : T ! T is the rotation by ↵ 2 [0, 1) and define
S : S ! S by

S(e2⇡i✓) = e2⇡i(✓+↵).
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Then the transformations T and S are related by the homeomorphism
⇢ : T ! S defined by ⇢(t) = e2⇡it. If z 2 Z, then

⇢(t+ z) = e2⇡i(t+z) = e2⇡ite2⇡iz = e2⇡it = ⇢(t),

and so ⇢ does not depend on the equivalence class of the point t. The
metric on T induces, under the map ⇢, an equivalent metric on S. Thus
the systems (T, T ) and (S, S) are conjugate and ⇢ is the conjugacy map.

Example 2.11 (Squaring/Doubling map). Take S1 with the squaring map
S : S1 ! S1 defined by S(z) = z2. Thus S maps the point z = e2⇡i✓ to the
point e4⇡i✓. This means that for the point z = ei✓, S doubles the angle ✓
and the doubling is taken modulo 2⇡.

The system (S1, S) is conjugate to the doubling map x 7! 2x mod 1
defined on T. To define the conjugacy ⇢, for z = e2⇡i✓ 2 S1, let ⇢(z) = ✓.
Then ⇢(z) is well-defined modulo 1. Identifying the points 0 and 1, we have
an isomorphism between S1 and T that preserves the dynamics.

Not all semiconjugacies are conjugacies:

Example 2.12 (Skew product). Let X = T⇥ T and define

T (x, y) = (x+ ↵ mod 1, 2x+ y + ↵ mod 1),

where ↵ 2 [0, 1). In general we omit the mod 1 from the notation and
write this as

T (x, y) = (x+ ↵, 2x+ y + ↵).

(It is clear from choice of the space that the entries must be taken mod 1.)
The projection map ⇡ : X ! T defined by ⇡(x, y) = x is a semiconjugacy.
Thus the dynamics of the circle rotation, with rotation by ↵, are contained
in this example. (See Exercise 2.5.)

Example 2.13 (Logistic map). Let X = [0, 1] and define Tx = kx(1� x),
where k 2 [0, 4]. (The restriction on k is only to guarantee that T maps
X to itself.) This dynamical system models population growth under some
simplifying assumptions. Assume that there is a maximum population, so
that if the population reaches this number then it suddenly dies out. For
example, there may be a lack of some necessary resource such as space or
food. Let P

n

denote the fraction of the total maximum population that is
alive at time n and thus 0  P

n

 1. The logistic model is

P
n+1 = kP

n

(1� P
n

),

where k is some constant determined by factors controlling the size of the
population, such as space or food. Without the factor (1�P

n

), the growth
of the population is exponential and with this factor, the dynamical system
has quadratic growth.
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2.3. Orbits

Dynamics is the study of repeated applications of a transformation on the
space and the behavior of points under these repeated applications. We
have terminology to describe these objects.

Definition 2.14. In a system (X,T ), the forward orbit O+
T

(x) of a point
x 2 X is the set containing x and its forward images:

O+
T

(x) = {x, Tx, T 2x, . . .}.
If (X,T ) is an invertible dynamical system, the backwards orbit O�

T

(x) of
the point x is

O�
T

(x) = {x, T�1x, T�2x, . . .}.
The full orbit O

T

(x) is the union of both the forward and backwards orbits:

O
T

(x) = O�
T

(x) [ O+
T

(x).

The points in the orbit of x are called the iterates of x, and the powers of
the transformation T are called iterates of the transformation.

The notion of a backwards orbit has only been defined in an invertible
dynamical system. Although one may wish to study the pre-images of a
point in an arbitrary system, this is a di↵erent notion than that of an orbit.

An orbit (forwards, backwards, or full) of a point may be finite or
infinite. For example, under a rational rotation, the orbit of any point is
finite. On the other hand, for an irrational rotation, the orbit of any point
is infinite (see exercise 2.3). One can also easily construct examples where
di↵erent points in the same system exhibit di↵erent types of behaviors, for
example with some points having finite orbit and others infinite.

The definition of an orbit extends to the the setting of more than one
transformation acting on the space:

Definition 2.15. If (X,G) is a dynamical system, the orbit O
G

(x) of a
point x 2 X is defined by

O
G

(x) = {gx : g 2 G}.

In this context, it no longer makes sense to refer to the forwards or
backwards orbit, as the group G does not necessarily have an order on it.

One of the simplest properties preserved under conjugacy is the ex-
istence of fixed points and of periodic points. For now, we restrict to
dynamical systems endowed with a single transformation:

Definition 2.16. If (X,T ) is a dynamical system, a point x 2 X is a fixed
point if Tx = x. In particular, a fixed point x stays fixed under all higher
iterations, meaning that Tnx = x for all n 2 N.



20 2. Dynamical Systems

If there exists some n 2 N such that x = Tnx, then x is said to be
a periodic point and the smallest such n is called the period of x. If no
such n exists, then x is said to be aperiodic. A point x 2 X is said to be
preperiodic if there exists some m 2 N such that Tmx is periodic.

If ⇡ is a conjugacy from the system (X,T ) to the system (Y, S), then
the image of the forward orbit of x is

⇡(x),⇡(Tx),⇡(T 2x), . . .

Thus a periodic point x is mapped onto a periodic point with the same
period. Clearly, a fixed point is also mapped under a conjugacy (and more
generally under a semiconjugacy) onto a fixed point.

A periodic point is a fixed point for some iterate Tn of T . However,
the two sets are not the same, since the fixed points of Tn also include
periodic points whose period is any divisor of n.

Example 2.17. All points are periodic (with the same period) for a ra-
tional rotation of the circle, but an irrational rotation of the circle has no
periodic points (Exercise 2.3).

Example 2.18. The only fixed point of the doubling map is 0. Further-
more,

2nx ⌘ x mod 1

has 2n � 1 distinct solutions x = k/(2n � 1), for k = 0, 1, . . . , 2n � 2. When
n is prime, k/(2n � 1) for k = 1, 2, . . . , 2n � 1 is periodic with period n.
This means that for prime n, the doubling map has (2n � 2)/n distinct
periodic orbits of period n. By conjugacy, the same holds for the squaring
map on the circle S1.

At times, we are interested not just in the behavior of individual points
under a transformation but in the behavior of sets:

Definition 2.19. Let (X,T ) be a dynamical system. If A ⇢ X, the image
T (A) of A under the map T is defined by:

T (A) = {Tx : x 2 A}.
Similarly, the pre-image T�1(A) of a set A is defined by:

T�1(A) = {x 2 X : Tx 2 A}.

Note that T�1(T (A)) contains A, but if T is not invertible then these
sets are not necessarily equal. One can easily construct a finite system such
that these sets di↵er. A more interesting situation is described in the next
section.
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2.4. Shift systems

Our next example recurs throughout the book and is the main tool for
translating combinatorial statements into dynamical ones. The idea is to
use sequences of symbols from a certain alphabet to encode information
about a dynamical system, the integers, or other dynamical objects.

Example 2.20 (Two-sided shift on k symbols). Fix some k 2 N. Let
⇤ = {0, 1, . . . , k � 1}, endowed with the discrete topology. Let

⌦ =
1Y

n=�1
⇤

be endowed with the product topology. We often write this using the
shorthand ⌦ = ⇤Z and call ⇤ the alphabet. (To simplify notation, we have
taken all ⇤ to be equal; one could also define ⇤

n

for each n 2 Z, without an
assumption that all ⇤

n

are identical, and take ⌦ =
Q1

n=�1 ⇤
n

. This leads
to more complicated dynamical systems, such as that of Exercise 2.15.)
Then ⌦ is a compact, totally disconnected, and Hausdor↵ space; it can be
made into a compact metric space by taking the metric

d(x, y) =

(
0 if x = y

2�m if x 6= y and m = min{|n| : x
n

6= y
n

}
(Exercise 2.6). Thus two points x and y are close if they agree for a large
number of entries centered around 0. In particular, d(x, y) = 1 if x0 6= y0
and d(x, y) < 1 otherwise. One can easily check that this metric generates
the product topology on ⌦. We write points x 2 X as x = {x

n

}
n2Z. We

define the shift map T : ⌦ ! ⌦ by Tx = y, where y
n

= x
n+1 for all n 2 Z.

. . . 001101011000101
#
0001000001001011010 . . .

. . . 011010110001010
#
0010000010010110101 . . .

Figure 2. The top is a bi-infinite sequence in the alphabet
{0, 1} with 0 marked by an arrow, and below is a shifted copy
of the sequence.

The cylinder sets are defined to be sets C ⇢ ⌦ of the form

(2.1) C = {x 2 ⌦ : (x
n1 , xn2 , . . . , xnj ) 2 A}

with A ⇢ {0, 1, . . . , k� 1}j a fixed set. These cylinder sets form a basis for
the topology of ⌦. Thus in order to check the continuity of T , it su�ces to
check it on the cylinder sets. Since for the cylinder set defined in (2.1),

T�1(C) = {x 2 ⌦ : (x
n1+1, xn2+1, . . . , xnj+1) 2 A}
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is itself a cylinder set, T is continuous. Since T�1(y) = x, where x
n

= y
n�1,

the transformation T is invertible and the inverse is continuous, using the
same argument that shows that T is continuous. The transformation T is
called the shift on the k symbol alphabet ⇤ and the system (⌦, T ) is called
the two-sided shift on k symbols, or more simply is called the k-shift.

For example, if we take an alphabet with the two symbols {0, 1}, then
⌦ consists of all bi-infinite sequences of 0’s and 1’s. If x is one of the
constant sequences, meaning that x = . . . 000 . . . or x = . . . 111 . . ., then
Tx = x. One can easily construct points with a given period n, by simply
taking a pattern of length n that cannot be decomposed into disjoint copies
of a smaller pattern, and copying this pattern in both directions. For a one-
sided shift, one can use a similar idea to construct preperiodic points, where
the preperiodic portion can have any length desired.

Often we build new dynamical systems out of existing ones. One of
the simplest ways to do this is by finding the new system within the given
system:

Definition 2.21. If (X,T ) is a dynamical system and Y ✓ X is a closed
set with T (Y ) ✓ Y , then the dynamical system (Y, T ) is called a subsystem
of the system (X,T ). More generally, if X ✓ ⌦ is a closed subset with
TX ✓ X, we call (X,T ) a symbolic dynamical system or more succinctly,
a symbolic system.

In order for these definitions to make sense, we must show that (Y, T ) is
in fact a dynamical system. This is left to Exercises 2.7 and 2.8. Symbolic
systems are further discussed in Section 3.2.

By using the indexing set N instead of Z in Example 2.20, we obtain
the one-sided shift on k symbols. In this case, when an element x is shifted,
we lose the information that was contained in the first entry. For example,
if (X,T ) is the one-sided shift on the alphabet {0, 1}, then if A consists of
the sequence of all 0’s, T (A) = A, but T�1(A) contains the sequence of all
0’s and the sequence with one 1 followed by all 0’s. Using this idea, one
can construct infinite sets A such that T�1(T (A)) contains A, but the two
sets are not equal.

Notes

Kronecker [42] proved results on Diophantine approximation (see Exer-
cises 3.8 and 3.9), and these results can be proven using the dynamical
system in Example 2.5. Furstenberg [25] dubbed this dynamical system a
Kronecker system and it, and generalizations of it, play an important role
in the proof of Szemerédi’s Theorem.



Exercises 23

The example of a symbolic dynamical system given in 2.20 has its
origins in work of Hadamard [33] and the papers of Morse and Hedlund
([43] and [44]).

Exercises

Exercise 2.1. Show that the space T defined in Example 2.4 is compact,
that the metric d defined is a metric, and that the transformation T defined
is continuous.

Exercise 2.2. If p/q is rational, give all the periodic points and their
periods under the rotation by p/q on the circle.

Exercise 2.3. Show that an irrational circle rotation has no periodic
points. Show that every point has a dense orbit.

Exercise 2.4. If (X,T ) is a dynamical system, show that x 2 X is periodic
if and only if O+

T

(x) is compact.

Exercise 2.5. Compute the orbit of (0, 0) in Example 2.12.

Exercise 2.6. Show that ⌦ = {0, 1, . . . , k � 1}Z is a metric space where

d(x, y) =
1

1 + min{|m| : x
m

6= y
m

}
and that this metric generates the product topology. Show that it is a
compact, totally disconnected, Hausdor↵ space.

Exercise 2.7. Let (⌦, T ) denote the shift space. Assume that X is a closed
subset of ⌦ with TX ✓ X. Show that (X,T ) is a dynamical system. This
is generalized in Exercise 2.8.

Exercise 2.8. Let (X,T ) be a dynamical system and assume that Y is a
closed subset of X with TY ⇢ Y . Show that (Y, T ) is a dynamical system.

Exercise 2.9. Let (X,T ) be the 2-shift. Find all sequences in X with
periods 2, 3, 4 and 5. Determine which sequences lie in the same orbit.

Exercise 2.10. Show that the orbit of a point x in the shift space (⌦, T )
on k symbols is dense if and only if every finite block of k symbols appears
somewhere in x.

Exercise 2.11. Show that for the 2-shift, ⌦ is homeomorphic to the Cantor
middle thirds set.

Exercise 2.12. Show that the preimage of a fixed (respectively, periodic)
point under a semi-conjugacy need not be a fixed (respectively, periodic)
point. More generally, show that every preimage under a semi-conjugacy
of a fixed (respectively, periodic) point might not be a fixed (respectively,
periodic) point.
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Exercise 2.13. Show that ifX is a compact metric space with metric d and
T : X ! X is an isometry, then T is invertible and d(T�1x, T�1y) = d(x, y)
for all x, y 2 X.

Exercise 2.14. Show that the periodic points are dense in [0, 1] for the
tent map T : [0, 1] ! [0, 1] defined by

T (x) =

(
2x if 0  x < 1/2

2� 2x if 1/2  x  1.

Show that the nonperiodic points are also dense.

Exercise 2.15. Let X
n

= {0, 1, . . . , k
n

} and let X =
Q1

n=1 Xn

. Define
T : X ! X by Tx = y where

y =

8
>>><

>>>:

(x1 + 1, x2, x3, . . .) if x1 < k1

(0, 0, . . . , 0, x
m

+ 1, x
m+1, xm+2, . . .) if x1 = k1, . . . ,

x
m�1 = k

m�1, xm

< k
m

(0, 0, . . . , 0) if x1 = k1, x2 = k2, . . .

Show that (X,T ) is a dynamical system. This is called the adding machine.

Exercise 2.16. Prove that a continuous, surjective transformation T : [0, 1]
! [0, 1] has at least one fixed point. Show that T 2 has at least 2 fixed
points. What about Tn for n 2 N?

Exercise 2.17. Characterized the periodic points for the map on T2 given
by

T (x, y) = (x, y + x) mod 1.
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Recurrence

3.1. Birkho↵ recurrence

The idea of recurrence is central throughout dynamics and is the major tool
that allows one to use dynamics to derive results in additive combinatorics.
Under some natural assumptions on the system or perhaps on a subset in
the system, the orbit of a point must return arbitrarily close to the original
point. The most basic such result is the Birkho↵ Recurrence Theorem, due
to George Birkho↵:

Theorem 3.1. Let (X,T ) be a dynamical system. There exists x 2 X
such that any neighborhood U of x contains some iterate Tnx with n 2 N.

Proof. Consider the family F of all nonempty closed subsets Y of X sat-
isfying TY ✓ Y . This family is nonempty, since it contains X. We can put
a partially ordering � on F by inclusion: we say that Y1 � Y2 if Y1 ⇢ Y2.

Let G be a totally ordered collection in the family F . The intersection
of any finite number of elements in G is nonempty (it is exactly the least
element in this finite subset) and is again in F . By the finite intersection
property (Theorem E.14), the intersection of all elements in G is nonempty.
Call this intersection G0. Since G0 is contained in each element of G, we
have that G0 is the lower bound for G. Therefore, by Zorn’s Lemma (Ax-
iom A.2), the family F has a minimal (again, with respect to the ordering
�) element Z. For any x 2 Z, let

Z0 = {Tnx : n � 1}.
Then Z0 is a closed set and TZ0 ✓ Z0. Since Z is also closed and satisfies
TZ ✓ Z, we have that Z0 ✓ Z. However, Z was chosen to be a minimal

25
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element and so we have that Z0 = Z. In particular, x 2 Z0. Therefore any
neighborhood of x contains some iterate Tnx for some n � 1. ⇤

The Birkho↵ Recurrence Theorem motivates several definitions. An
important role in the proof is played by sets which get mapped into them-
selves under the transformation:

Definition 3.2. If (X,T ) is a dynamical system, a set Y ✓ X is said to
be invariant under T if TY ✓ Y . We also call such a set T -invariant.

It follows immediately from the definition that if Y ✓ X is T -invariant,
then TnY ✓ Y for all n 2 N.

For example, under the identity transformation Id on a space X, any
subset Y ⇢ X is T -invariant. If X = [0, 1] with Tx = x2, then the set
[0, 1/2] is T -invariant, while the set [0, 1/4] [ [1/2, 3/4] is not.

The type of point found in the conclusion of the theorem plays a major
role in all our results:

Definition 3.3. If (X,T ) is a dynamical system, a point x 2 X is said to
be recurrent if for any neighborhood U of x, there exists an integer n � 1
such that Tnx 2 U .

If X is a metric space and x 2 X is a recurrent point, then there is
not just one iterate returning to a given neighborhood but infinitely many
iterates return. That is, for all " > 0, there exist infinitely many n 2 N
such that d(Tnx, x) < ". If not, then we could always find some "0 < "
such that the "0-neighborhood of x contained no forward iterate of x.

Moreover, if we take a sequence of neighborhoods around a recurrent
point x whose diameters shrink to 0, we can find an iterate of x lying in
each neighborhood. This idea leads to an alternate characterization of a
recurrent point: the point x 2 X is recurrence if there exists a sequence of
integers n

k

! 1 such that Tnkx ! x.

It follows immediately from the definition that any fixed or periodic
point is recurrent. However, more interesting behavior occurs when the
iterates come close to, but do not equal, the original point. Every point in
a Kronecker system exhibits such behavior:

Example 3.4. Let (X,T ) be a Kronecker system and assume that Tx = ax
for some fixed element a 2 X. By the Birkho↵ Recurrence Theorem, we
know that some point x0 2 X is recurrent. Since X is a group, given any
x 2 X, we can write x = x0y for some y 2 X. If U is any neighborhood of
x, then Uy�1 is a neighborhood of x0. Since x0 is recurrent, there exists
n 2 N such that anx0 2 Uy�1. But this implies that an(x0y) 2 U , which
is equivalent to saying that anx 2 U . Thus every point is recurrent.
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The proof of the Birkho↵ Recurrence Theorem (Theorem 3.1) gives a
bit more than was stated. We showed that any dynamical system (X,T )
contains a nonempty, closed T -invariant subset, which is the orbit closure
of a recurrent point in X. This subset may be all of X, such as in the case
of a minimal Kronecker system, may be a single point, such as in a system
with a unique fixed point, or can be something in between.

More generally, the same proof can be extended to a dynamical system
(X,G), where G is a semigroup of transformations acting continuously on
X. We extend the definitions to this setting:

Definition 3.5. If (X,G) is a dynamical system, a subset Y ⇢ X is G-
invariant if gY ⇢ Y for all g 2 G.

A point x 2 X is recurrent if there exists a sequence g
k

2 G such that
g
k

x ! x.

The corresponding extension of the Birkho↵ Recurrence Theorem is
left to Exercise 3.6.

3.2. Symbolic systems and recurrence

We recall the definition of a symbolic system from Section 2.4. Let ⇤ be an
alphabet and consider the one-sided shift (⇤N, T ). Assume that X ✓ ⇤N is
a closed T -invariant subspace. Recall (see Example 2.20) that the metric
on (X,T ) is defined by setting the distance between points x and y to
be 0 if the points are equal, and otherwise the distance is 2�m, where
m = min{|n| : x

n

6= y
n

}.
A finite sequence of elements of ⇤ is called a word in the alphabet ⇤

and the length |⇤| of this word is the number of letters in the sequence.
If w and w0 are words in ⇤, then the concatenation ww0 is also a word in
⇤. An element of ⇤N can be viewed as a concatenation of infinitely many
words. (Infinitely many words are needed, since by definition a word has
finite length.)

A word w = w1w2 . . . wn

occurs in another word w0 = w0
1w

0
2 . . . w

0
m

if
for some j 2 {1, 2, . . . ,m� n}, w1 = w0

j+1, w2 = w0
j+2, . . . , wn

= w0
j+n

and
we say that w is a subword of w0. In this case, we can write w0 = uwv for
some, possibly empty, words u and v.

If x 2 ⇤N is periodic, then there exists some word w such that x =
www . . .. We also write this as x = w, where the bar indicates that w
is repeated infinitely often. Similarly we can write a preperiodic point as
x = w0w, where w and w0 are words in ⇤. Thus in the one-sided shift on
the symbols {0, 1}, the fixed point consisting of all 0’s is written as 0 and
the point alternating 0’s and 1’s is written as 01.
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It follows immediately from the definitions that x 2 ⇤N is recurrent
if and only if every word in x occurs a second time. In particular, this
means that every word in x occurs infinitely often. Furthermore, it su�ces
to consider words that start at the beginning of x, since all words occur in
these words. Thus if a is the first symbol of a recurrent point x 2 ⇤N, then
there is some word w1 such that the initial portion of x is exactly aw1a.
Since the initial word aw1a also must recur, we can find a word w2 such
that the initial portion of x is aw1aw2aw1a. Continuing this process leads
to:

Lemma 3.6. If ⇤ is a finite alphabet, then x 2 ⇤N is recurrent under the
shift T if and only if

x = aw1aw2aw1aw3aw1aw2aw1aw4aw1aw2aw1aw3aw1aw2aw1a . . .

for some symbol a 2 ⇤ and words w1, w2, . . . in the alphabet ⇤.

It is easy to construct invariant sets in the shift system (⇤N, T ). Start-
ing with any point x 2 ⇤N, let X be its orbit closure:

X = {Tnx : n 2 N}.
Then X is a closed, T -invariant subset of ⇤N. Depending on the choice of
x, the subset X may be finite, infinite but not all of ⇤N, or equal to ⇤N

(Exercise 3.3).

3.3. Hilbert’s Theorem: an early coloring
theorem

In the late 1800’s, Hilbert proved what is generally considered the first
result in Ramsey Theory. We now have the tools to prove this result,
first translating the problem on patterns in the natural numbers into a
statement in topological dynamics and then using the Birkho↵ Recurrence
Theorem to prove the dynamical statement. This result and its proof are
prototypes for the more complicated coloring theorems that follow.

For a subset A = {n1, n2, . . . , nk

} of integers, let P(A) denote the set of
all finite (possibly empty) sums n

i1+n
i2+. . .+n

im with i1 < i2 < . . . < i
m

.
Thus P(A) is the set of all finite sums of distinct elements of A. Hilbert
showed:

Theorem 3.7. If N = C1 [ C2 [ . . . [ C
r

is a finite partition, then for all
` 2 N, there exists a set A = {n1, n2, . . . , n`

} of natural numbers such that
infinitely many translates of P(A) lie in C

j

for some j 2 {1, 2, . . . , r}.

Proof. We first define the particular dynamical system used for proving
the coloring statement. Let ⇤ = {1, 2, . . . , r}. Define

y
n

= i if and only if n 2 C
i

for i = 1, 2, . . . , r.
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Thus y = (y
n

: n 2 N) 2 ⇤N. We consider the system (O+
T

(y), T ) generated
by y under the shift T . By Theorem 3.1, this system contains a recurrent
point x.

Let a denote the first coordinate x1 of x. We show that C
a

, the element
of the partition containing all sequences whose first entry is a, contains the
desired pattern. Since x is recurrent, by Lemma 3.6 x has the form

aw1aw2aw1aw3aw1aw2aw1a . . .

for some symbol a 2 ⇤ and words w1, w2, . . . in the alphabet ⇤. Define

W0 = a

W1 = W0w1W0

W2 = W1w2W1

...

W
n

= W
n�1wn

W
n�1.

By definition, W
n

includes the sequence W
n�1 as its initial portion and the

point x is a limit of the finite sequences W
n

. If some symbol occurs at the
p-th entry of W

n

, then the same symbol occurs both at p and p + m
n

in
W

n+1, where m
n

= |W
n

w
n+1|. In particular, the symbol a occurs at each

of the following entries:

1, 1 +m1, 1 +m2, 1 +m1 +m2, . . . , 1 +m1 +m2 + . . .+m
`

.

This means that a occurs at each of the 2` sums in P(m1,m2, . . . ,m`

). By
recurrence, again, every word occurs infinitely often in x and so C

a

contains
infinitely many translates of P(m1,m2, . . . ,m`

).

We now apply this in the system (O+
T

(y), T ). This system contains a
recurrent point x which has the above form. If x = Tny for some n 2 N,
then the first symbol in x occurs in y on infinitely many translates of

P(m1,m2, . . . ,m`

) and we are done. Otherwise, x is a limit point of O+
T

(y)
and so there exists a sequence n

k

! 1 such that Tnky ! x as n
k

! 1.
If y is periodic, then some translate of y is exactly x and so the symbol a
appears in y on a translate of an arithmetic progression and again we are
done. So assume that y is not periodic. If a is the first symbol in x, then a
recurs at 1 + p for all p 2 P(m1,m2, . . . ,m`

), as above. We can choose n
k

su�ciently large such that Tnky and x agree for 1 + m1 + m2 + . . . + m
`

entries. Then y
nk+p

= a for all p 2 P(m1,m2, . . . ,m`

). Taking n
k

! 1,
we have 1 + n

k

+ P(m1,m2, . . . ,m`

) ⇢ C
a

for an infinite sequence n
k

. ⇤

Hilbert’s Theorem is one of the earliest examples of what can be called
a Ramsey type theorem, finding a monochromatic pattern that must occur
in any finite coloring of the integers. The monochromatic subsets found in
this theorem are parallelepipeds. More precisely, a subset A of a group is a
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k-dimensional parallelepiped if there exist positive integers p1, p2, . . . , pk�1

such that A = A1[A2[. . .[A
k

, where A1 = {a}, A2 = A1+p1, A3 = (A1[
A2)+p2, . . . , Ak

= (A1[A2[ . . .[A
k�1)+p

k�1. In this language, Hilbert’s
Theorem states that given a finite coloring of the natural numbers, there
exists a k-dimensional parallelepiped such that infinitely many translates
of it have the same color.

3.4. Limit sets

Recurrence and other dynamical properties are determined by the behavior
of high iterates of points. One way to capture this long term behavior is
by describing the set of points that are close to the orbit of a point. We
begin with some definitions to make this notion precise.

Definition 3.8. If (X,T ) is a metrizable dynamical system and x 2 X is
a point, a point y 2 X is an !-limit point of x if there exists a sequence of
integers n

k

! 1 such that Tnkx ! y. The !-limit set of x is the set of all
!-limit points of x and is denoted by !(x).

In particular, y is an !-limit point of x if y 2 O+
T

(x). We can define
recurrence in this terminology: a point x is recurrent if and only if x 2 !(x).
Symbolically, the !-limit set is defined by

!(x) =
1\

n=1

[

j>n

T jx.

If (X,T ) is the one-sided shift on the symbols {0, 1} and x = 01, then
!(x) = {01, 10}. If x = 010011000111 . . ., then !(x) consists of all se-
quences with any finite number (possibly 0) of 0’s followed by infinitely
many 1’s and all sequences with any finite number of 1’s (possibly 0) fol-
lowed by infinitely many 0’s. Under the squaring map x 7! x2 on [0, 1], we
have that !(x) = 0 for any 0  x < 1 and !(1) = 1.

In any dynamical system, the !-limit set of a point is always nonempty,
compact and T -invariant (Exercise 3.19). It follows that if X has no
nonempty proper closed invariant subsets, then !(x) = X for all x 2 X.

If T is not invertible, then T�1
�
!(x)

�
can be larger than !(x). For

example, for the one-sided shift on k symbols, if we take x = 0, then
!(x) = x, but T�1x contains k points.

In a dynamical system (X,T ) with an invertible transformation T ,
it also makes sense to consider the long term behavior of orbits under
backwards iteration:



3.4. Limit sets 31

Definition 3.9. If (X,T ) is a dynamical system with invertible T and
x 2 X, the ↵-limit set ↵(x) of the point x is defined by

↵(x) =
1\

n=1

[

j>n

T�jx.

As for the !-limit set, ↵(x) is nonempty, compact, and T -invariant.

The behavior of neighborhoods of a point can also give insight into the
long term dynamics. We define:

Definition 3.10. In a dynamical system (X,T ), a point x 2 X is wan-
dering if there exists some neighborhood U of x such that T�1U, T�2U, . . .
are all disjoint from U . Otherwise, the point x is said to be nonwandering.
The set of nonwandering points in (X,T ) is called the nonwandering set
and is denoted by ⌦ = ⌦(T ).

Thus for a wandering point x and for some neighborhood U of x,
we have that for distinct integers n,m � 1, T�nU \ T�mU = ?. For a
nonwandering point x and any neighborhood U of x, there exists n 2 N
such that T�n(U) \ U 6= ?. Clearly, any recurrent point is nonwandering.

An equivalent formulation of the nonwandering set of T is:

⌦(T ) = {x 2 X : for all neighborhoods U of x, there exists

n � 1 such that T�nU \ U 6= ?}.

If T is a homeomorphism, then T�nU \ U = T�n(U \ TnU) and so
⌦(T�1) = ⌦(T ) and we can define

⌦(T ) = {x 2 X : for all neighborhoods U of x, there exists

n 6= 0 such that T�nU \ U 6= ?}.
We can show a bit more:

Theorem 3.11. If (X,T ) is a metrizable dynamical system, then

⌦(T ) = {x 2 X : for all neighborhoods U of x and all integers

N � 1, there exists n � N such that T�nU \ U 6= ?}.

Proof. The right hand side is clearly a subset of ⌦(T ) and so it su�ces to
prove the opposite inclusion. Let x 2 ⌦(T ), U be a neighborhood of x and
let N � 1 be an integer. If x is periodic, then T�nU \U 6= ? for infinitely
many n and so certainly for some n � N . So assume that x is not periodic.

Fix an integer N � 1. Choose " > 0 such that the ball B(x; ") around
x of radius " satisfies B(x; ") ⇢ U . We show that there exists 0 < � < "
such that B(x; �) \ T�jB(x; �) = ? for all j with 1  j  N � 1. If
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no such � exists, then for every n 2 N with 1/n < ", there exists x
n

2
B(x; 1/n) \ T�jnB(x; 1/n) for some 1  j

n

 N � 1. Since N is finite, by
the Pigeonhole Principle we can choose a subsequence of integers {n

i

} such
that j

ni = k for all i. Then x
ni 2 B(x; 1/n

i

) and so x
ni ! x as i ! 1 and

T kx
ni 2 B(x; 1/n

i

). Therefore T kx
ni ! x. But x

ni ! x also implies that
T kx

ni ! T kx by the continuity of T k. Since T kx
ni approaches both T kx

and x, we must have that T kx = x, a contradiction of the assumption that
x is not periodic. This proves the existence of such �. Thus for x 2 ⌦(T ),
there exists n � N with B(x; �) \ T�nB(x; �) 6= ?. ⇤

We can also define the notion of nonwandering for an open subset in
a system (X,T ).

Definition 3.12. Let (X,T ) be a dynamical system. An open set A ⇢ X
is wandering if A, T�1A, T�2A, . . . are all disjoint and otherwise it is non-
wandering. The system (X,T ) is said to be nonwandering if no nonempty
open set is wandering.

Under the assumption of nonwandering, most points in a compact
metric space must be recurrent:

Theorem 3.13. Assume that X is a compact metric space. If the dy-
namical system (X,T ) is nonwandering, then the set of recurrent points of
(X,T ) is residual.

(For the definition of a residual set, see Appendix ??.)

Proof. Define

f(x) = inf
n�1

d(x, Tnx).

Then for any " > 0 and x0 2 X, if f(x0) = y, then d(x0, T
nx0) < y + "

for some n 2 N. By continuity, we have that d(x, Tnx) < y + " for all x
in some neighborhood of x0. Thus for all x in this neighborhood of x0, we
have that f(x) < f(x0) + " and so f is upper semicontinuous.

By Theorem F.20, an upper semicontinuous function on a complete
metric space has a residual set of points of continuity. Let x0 be a point of
continuity of f(x). If f(x0) = 0, then x0 is a recurrent point. If f(x0) > 0,
then there exists a neighborhood U of x0 and " > 0 such that f(x) > " for
all x 2 U . Without loss, we can assume that the diameter of U is less than
". Then U is not a wandering set and so for some n 2 N, T�nU \ U 6= ?.
This means that for some x 2 U , we have Tnx 2 U and so f(x) < ", a
contradiction. Therefore, at the residual set of points of continuity, f(x) =
0 and so each of these points is recurrent. ⇤
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Notes

The first recurrence result was stated and proved by Poincaré [46], in
the context of a measure preserving transformation on a finite measure
space. Poincaré recurrence is the base case for the complicated induction
in Furstenberg’s proof [25] of Szemerédi’s Theorem. Birkho↵ proved re-
currence in the setting of a compact topological group in [5]; he actually
proved a stronger statement showing that one has not only recurrence, but
also (in modern terminology) almost periodic points and minimal sets. The
definitions and statements are left until Chapter 4.

Although the proof of Theorem 3.1 given uses Zorn’s Lemma, one can
give a constructive proof and we do so in Section 4.2.

Hilbert proved Theorem 3.7, as part of his “irreducibility” theorem
on rational functions in [37]. He does not seem to have studied the com-
binatorial implications of the result. The proof given here follows that
of Furstenberg [27]. Hilbert’s Theorem can be strengthened in several
ways, and Schur [57] proved the first such result, showing that any finite
coloring of the integers contains a monochromatic cube (a 2-dimensional
parallelepiped). We prove Schur’s Theorem in Section 12.1. This was ex-
tended by Folkman [21] to k-dimensional parallelepipeds. In Section 12 we
prove Hindman’s far reaching generalization, showing that in any finite col-
oring of the integers, there is always a monochromatic infinite dimensional
parallelepiped.

A proof of Theorem 3.13 is given in Furstenberg [27].

Exercises

For all the exercises, assume that (X,T ) is a dynamical system.

Exercise 3.1. Show that Birkho↵’s Theorem fails if you remove either the
assumption that X is compact or the assumption that T is continuous.

Exercise 3.2. If (X,T ) is a dynamical system and Y ⇢ X is T -invariant,
show that Y is also T -invariant.

Exercise 3.3. In the shift system (⇤N, T ), find x whose orbit closure is
finite, x whose orbit closure is infinite but is not all of ⇤N, and x whose
orbit closure is equal to ⇤N.

Exercise 3.4. Construct a dynamical system with exactly k recurrent
points.

Exercise 3.5. Construct a dynamical system with a dense set of recurrent
points, but not all points are recurrent.

Exercise 3.6. Show that any dynamical system (X,G) contains a recur-
rent point.
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Exercise 3.7. Show that for all ↵ 2 R and all " > 0, there exist m,n 2 Z
such that |n↵�m| < ".

Exercise 3.8. Prove Kronecker’s Theorem: show that that for all ↵ /2 Q,
� 2 R and " > 0, there exist m,n 2 Z such that |n↵� � �m| < ".

Exercise 3.9. Show that Kronecker’s (one dimensional) Theorem is equiv-
alent to showing that for any ↵ /2 Q, {n↵ mod 1: n 2 N} is dense in [0, 1].

Exercise 3.10. Show that the preimage of a recurrent point under a semi-
conjugacy need not be a recurrent point. More generally, show that every
preimage of a recurrent point under a semiconjugacy might not be recur-
rent.

Exercise 3.11. Show that if x is recurrent under Tn for some n 2 N with
n � 2, then it is recurrent under T .

Exercise 3.12. Show that if x is recurrent under T , then x is recurrent
under Tn for all n 2 N.
Exercise 3.13. Show that the metric on a symbolic system (X,T ) is equiv-
alent to the metric defined as follows: if a, b 2 ⇤, set d0(a, b) = 1 if a 6= b
and d0(a, b) = 0 otherwise, and then for x, y 2 X, define

d(x, y) =
1X

n=1

d0(x
i

, y
i

)
2n

.

Exercise 3.14. If (X,T ) is a symbolic space, the cylinder set of the word
w is defined to be {x 2 X : x1 . . . xn

= w}. Show that every cylinder set is
both open and closed.

Exercise 3.15. Show that any closed and open set in a symbolic space is
a finite union of cylinder sets.

Exercise 3.16. If ⇤ is a finite alphabet, show that the symbolic space ⇤N

is a Cantor space. That is, show that it is compact, totally disconnected,
and perfect.

Exercise 3.17. Show that any compact, totally disconnected metric space
is homeomorphic to a symbolic space. (This ia a converse to Exercise 3.16.)

Exercise 3.18. Show that if x 2 O+
T

(y) and y 2 O+
T

(z), then x 2 O+
T

(z).

If T is invertible, then show that if x 2 O
T

(y) and y 2 O
T

(z), then
x 2 O

T

(z).

Exercise 3.19. Show that the ↵-limit set and the !-limit set of a point
are nonempty, compact and T -invariant.

Exercise 3.20. Define the !-limit set !(Y ) of a set Y ✓ X by

!(Y ) =
1\

n=1

[

j>n

T j(Y ).
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Show that for any Y ✓ X, !(Y ) is a compact, T -invariant subset.

Exercise 3.21. Show that for any Y ✓ X, !(!(Y )) = !(Y ).

Exercise 3.22. Show that for any Y ✓ X, !(Y ) = !(Y ).

Exercise 3.23. Show that the nonwandering set is closed, T -invariant,
and contains !(x) and ↵(x) for all x 2 X. (In particular, by Exercise 3.19,
it is nonempty.)

Exercise 3.24. Show that the closure of the recurrent points is contained
in the nonwandering set.

Exercise 3.25. (Di�cult) Give an example showing the closure of the
recurrent points is not always equal to the nonwandering set.





Chapter 4

Minimality

4.1. Minimal systems

Dynamical systems which have no nontrivial subsystems are in a sense
indecomposable. These are the minimal systems, and play a fundamental
role in topological dynamics:

Definition 4.1. If (X,T ) is a dynamical system, Y ✓ X is a minimal
set if it is closed, T -invariant and contains no proper, closed, nonempty
T -invariant subset. The system (X,T ) is said to be minimal if contains no
nontrivial minimal subsets.

Generalizing this terminiology, if Y ✓ X is a minimal set, then we
refer to the subsystem (Y, T ) as minimal.

It is immediate that if x 2 X is a fixed point, then {x} is a minimal
set. Similarly, the orbit of a periodic point is minimal. More generally, a
minimal set is the orbit closure of any of its points:

Proposition 4.2. If (X,T ) is a dynamical system, then Y ✓ X is a
minimal set if and only if O+

T

(y) is dense in Y for all y 2 Y .

Proof. Assume that Y is minimal. If the forward orbit of some y 2 Y is

not dense in Y , then O+
T

(y) is a proper, closed, nonempty subset of Y that
is T -invariant, contradicting the minimality of Y . Conversely, if Y ✓ X
is not minimal, then it contains some point whose forward orbit closure is
contained in a proper, closed subset of Y . But then this orbit is not dense
in Y . ⇤

37



38 4. Minimality

This proposition gives another equivalent way of formulating minimal-
ity. In the system (X,T ), Y ✓ X is minimal if and only if for all x, y 2 Y ,

x 2 O+
T

(y). In particular, this immediately implies that any point in a
minimal set is recurrent. The converse does not hold: a recurrent point
need not lie in a minimal set (Exercise 4.1).

Applying Proposition 4.2 to X, we have that X itself is minimal if
no proper, closed, nonempty subset of X is T -invariant. Thus the system
(X,T ) is minimal if and only if for each x 2 X, {Tnx : n 2 N} is dense in
X.

When X is a metric space, it is often convenient to reformulate min-
imality in terms of the metric: Y ✓ X is minimal if and only if for all
x, y 2 X and all " > 0, there exists n 2 N such that d(Tnx, y) < ".

In our proof of the Birkho↵ Recurrence Theorem (Theorem 3.1) we
showed not only the existence of a recurrent point, but of a minimal set:

Proposition 4.3. Any dynamical system (X,T ) contains a minimal sub-
system.

Proof. Take the minimal set Z0 found in the proof of Theorem 3.1. Re-
stricting T to Z0 gives a minimal subsystem (Z0, T ). ⇤

Example 4.4. The system (X, Id) is minimal if and only if X consists of
a single point.

Example 4.5. An automorphism A of a compact metrizable group G is
minimal if and only if G = {e}, since Ae = e.

Example 4.6. The (one or two-sided) shift on k symbols is minimal if and
only if k = 1. On the other hand, it is easy to construct minimal sets in a
shift system. For example, when k = 2, {01, 10} is a minimal set.

Example 4.7. If X = [0, 1] and Tx = x2, then X is not minimal since the
orbit of any point other than 0 or 1 does not recur. The only minimal sets
in X are {0} and {1}.

A Kronecker system is minimal under a simple condition on the element
defining the rotation:

Proposition 4.8. If (X,T ) is a Kronecker system and Tx = ax for some
fixed a 2 X, then X is minimal if and only if {an : n 2 N} is dense in X.

Proof. Let e denote the identity in X. Since O+
T

(e) = {an : n 2 N},
minimality implies that {an : n 2 N} is dense. Conversely, assume that

{an : n 2 N} is dense. For any x 2 X, we show that O+
T

(x) = X. Let
y 2 X be arbitrary. Multiplication by the fixed element x is a continuous
map. By assumption, we can approximate yx�1 arbitrarily well by iterates
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anj for appropriately chosen n
j

. Thus we have that {anjx} approximates
y arbitrarily well. Therefore O+

T

(x) is dense in X. ⇤

This implies that an irrational circle rotation is minimal, while a ra-
tional circle rotation is not. However, the (finite) orbit of a point under a
rational circle rotation is a minimal set.

It is useful to characterize minimality in terms of open sets:

Proposition 4.9. For a dynamical system (X,T ), the following are equiv-
alent:

(1) The system (X,T ) is minimal.

(2) For all x 2 X, O+
T

(x) = X.

(3) The only closed subsets Y ✓ X with TY ✓ Y are ? and X.

(4) For any nonempty open set U ✓ X,
S1

n=0 T
�nU = X.

(5) For any nonempty open set U ✓ X, there exist finitely many

positive integers n1, n2, . . . , nk

such that
S

k

j=1 T
�njU = X.

Proof. (1) , (2) , (3). These equivalences follow immediately from the
definition and Proposition 4.2.

(3) ) (4). Assume that U ✓ X is a nonempty open set. It follows thatS1
n=0 T

�nU is also an open set and so

Y = X �
1[

n=0

T�nU

is closed. Furthermore, TY ✓ Y . If Y 6= X, then by hypothesis Y = ?,
which means that

S1
n=0 T

�nU = X.

(4) ) (5). If U is a nonempty open set, then
S1

n=0 T
�nU = X. By

compactness, finitely many of the iterates of U cover all of X.

(5) ) (1). Assume that X is not minimal. If Y is a closed, invariant subset
ofX, set U = X�Y . Then

S
k

j=1 T
�njU is not all ofX, a contradiction. ⇤

Minimality means that the space does not split into smaller pieces on
which the transformation acts; the transformation is “indecomposable.” An
optimistic conjecture would be that system can be partitioned into minimal
systems. Unfortunately, this does not hold, as is easily seen in the example
x 7! x2 on [0, 1]. On the other hand, since any system does contain minimal
subsystems, for many theorems that we prove it will su�ce to work in a
minimal system. In this sense, they are the fundamental building blocks of
dynamical systems.

We conclude this section with two examples of minimal systems, both
constructed using symbolic systems.
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Example 4.10. Let ⌦ = {0, 1}N and let T be the shift on ⌦. Given a
finite word w in the alphabet {0, 1}, define w0 to be the word obtained by
replacing every 0 in w by a 1 and every 1 in w by a 0. Inductively, define
words w

n

by setting w0 = 0 and w
n+1 = w

n

w0
n

:

w0 = 0

w1 = 01

w2 = 0110

w3 = 01101001

w4 = 0110100110010110

w5 = 01101001100101101001011001101001

...

In this inductive procedure, at the n-th step the first 2n entries of the
sequence have been defined and remain unchanged thereafter. Thus it
makes sense to look at the limiting sequence of this procedure, and we
define ! to be the limit of the words w

n

, as n ! 1. This sequence ! is

known as the Morse sequence. Taking X = {O+
T

(!)}, the system (X,T ) is
known as the Morse system. It is minimal and infinite (Exercise 4.12).

Example 4.11. Let ⌦ = {0, 1}N and let T be the shift on ⌦. Define words
w

n

in {0, 1} inductively by setting w1 = 0010 and w
n+1 = w

n

w
n

1w
n

. Once
again, this inductive procedure has a limit and we set ! to be the limit of
the words w

n

, as n ! 1:

! = 0010001010010001000101001010010001010010 . . .

This ! is called the Chacon sequence and the system (X,T ), where X =

{O+
T

(!)} is called the Chacon system. It is minimal and infinite (Exer-
cise 4.13).

4.2. Constructive proof of the existence of
minimal sets

In Theorem 3.1, we used Zorn’s Lemma to show the existence of minimal
subsystems in any system. However, it is interesting to note that one can
give a constructive proof of this fact.

Constructive proof of Proposition 4.3. Assume that (X,T ) is a dy-
namical system. Let U1, U2, . . . be open sets forming a basis for the topol-
ogy of X. (Note that since X is a compact metric space, it is second
countable.) We construct the minimal set inductively. Consider the set



4.3. Uniform Recurrence 41

S1
j=0 T

�jU1. If this set is equal to all of X, then set X1 = X. Otherwise
remove this set from X and set

X1 = X �
1[

j=0

T�jU1.

In both cases, X1 ⇢ X is a T -invariant set. If U1 \X1 6= ?, then the orbit
of every point in X1 intersects U1.

We now repeat this argument for U2 \X1. Thus if
S1

j=0 T
�jU2 ◆ X1,

then set X2 = X1 and otherwise set X2 = X1 �S1
j=0 T

�jU2. We continue
the process inductively. Once X

n�1 has been defined, we define X
n

:
(
X

n

= X
n�1 if

S1
j=0 T

�jU
n

◆ X
n�1

X
n

= X
n�1 �S1

j=0 T
�jU

n

otherwise.

Define

E =
1\

n=1

X
n

.

Since X is compact, E 6= ?. For each U
k

with U
k

\ E 6= ?, we have thatS1
j=0 T

�jU
k

◆ E. Since U1 \ E,U2 \ E, . . . is a basis for the topology of
E, every point in E has a dense orbit. Therefore E is a minimal set. ⇤

4.3. Uniform Recurrence

In a dynamical system (X,T ), if x 2 X is recurrent and U is a neighborhood
of x, then we know that {n 2 N : Tnx 2 U} is a nonempty set. This set
may be small, in the sense that the gaps between consecutive entries can
grow arbitrarily large. For example, in the 2-shift consider a sequence
obtained by starting with a 1, followed by as many 0’s as in the initial
string, repeating the initial string, followed by as many 0’s as in the new
initial string, and then iterating this process:

101000101000000000000000101000101000000000000000 . . . .

By construction, each initial segment recurs and so this point is recurrent.
However, the number of iterates that need to be considered until the point
recurs grows like 2n, where n is the length of the initial segment.

Points in a minimal system can not have this sort of behavior and
return to any neighborhood with greater frequency than arbitrary recurrent
points. We introduce a definition to quantify this frequency:

Definition 4.12. A subset S ✓ N is syndetic if S has bounded gaps.

A syndetic set is sometimes also referred to as relatively dense. If
S is syndetic, there exists some M 2 N such that S has nontrivial in-
tersection with every interval of length M in N. For example, the set



42 4. Minimality

{1, 10, 100, 1000, . . .} is not syndetic, nor is the set of natural numbers
with no 1’s in their (base 10) expansion. On the other hand, the sets
{9, 19, 29, 39, . . .} and {9, 18, 29, 38, 49, 58, . . .} are both syndetic.

The definition of syndetic can be extended in the obvious way for
subsets of Z: S ✓ Z is syndetic if S has bounded gaps.

We now use the notion of syndeticity to strengthen the idea of recur-
rence, requiring that a point return to any neighborhood of itself with some
frequency.

Definition 4.13. If (X,T ) is a dynamical system, x 2 X, and U is a
neighborhood of x, then

{n 2 N : Tnx 2 U}
is called the set of return times of x to U .

Definition 4.14. Let (X,T ) be a dynamical system. A point x 2 X is
uniformly recurrent if for every neighborhood U of x, the set of return times
of x to U is syndetic.

A uniformly recurrent point is sometimes also referred to as an almost
periodic point, emphasizing that in counting iterates which return to a
neighborhood of the point, this growth rate is the same as the growth rate
of a periodic sequence.

Clearly any fixed point, and more generally any periodic point, is uni-
formly recurrent. There is an intermediate, weaker than periodic but strong
than uniform recurrence:

Definition 4.15. In a dynamical system (X,T ), a point x 2 X is quasiperi-
odic if for any neighborhood U of x, there exists p 2 N, called the quasiperiod,
such that for all n 2 N, we have Tnpx 2 U .

If a point is periodic, then it is quasiperiodic, if a point is quasiperiodic
then it is uniformly recurrent, and if a point is uniformly recurrent then it
is recurrent. None of these implications can be reversed.

Example 4.16. In the symbolic system ⇤N, where ⇤ is a finite alphabet,
a point x is uniformly recurrent if and only if every word that occurs in x
occurs along a syndetic set (for example, by considering the first entry of
the word). By Lemma 3.6, any recurrent point has the form

aw1aw2aw1aw3aw1aw2aw1aw4aw1aw2aw1aw3aw1aw2aw1a . . .

for a symbol a 2 ⇤ and words w1, w2, . . . in the alphabet ⇤. For uniform
recurrence, the length of the words w

n

must be bounded. Thus one can eas-
ily construct points in the 2-shift that are recurrent but are not uniformly
recurrent.
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Example 4.17. In an irrational rotation, each point is uniformly recurrent,
but not quasiperiodic. Another example is given in Exercise 4.9.

We now explain the close relation between minimality and uniform
recurrence.

Theorem 4.18. If the dynamical system (X,T ) is minimal, then every
x 2 X is uniformly recurrent.

Proof. Let x 2 X and let U be a neighborhood of x. By Proposition 4.9,
there exist finitely many iterates n1, n2, . . . , nk

such that

X =
k[

j=1

T�njU.

Therefore, for each n 2 N, there exists n
j

= n
j

(n) with j 2 {1, 2, . . . , k}
such that Tnx 2 T�njU . This means that Tn+njx 2 U and so the gaps in
the return times to U are bounded by max{n1, n2, . . . , nk

}. ⇤

As was noted in Proposition 4.3, it follows from our proof of the
Birkho↵ Recurrence Theorem that any system (X,T ) contains a minimal
system. This leads to:

Corollary 4.19. Any dynamical system (X,T ) contains uniformly recur-
rent points.

The converse of Theorem 4.18 does not hold. If each x 2 X is uniformly
recurrent, it is not necessarily true that X is minimal, as is seen by taking
the union of two minimal sets. However, we do have something close to a
converse:

Theorem 4.20. Let (X,T ) be a dynamical system. If x 2 X is uniformly

recurrent, then its forward orbit closure O+
T

(x) is a minimal, T -invariant,
closed subset of X.

Proof. Assume that x 2 X is uniformly recurrent. It su�ces to show that

if y 2 O+
T

(x), then x 2 O+
T

(y).

We proceed by contradiction. Assume that x /2 O+
T

(y). Let U be

a neighborhood of x such that U \ O+
T

(y) = ?. Since x is uniformly
recurrent, there exist positive integers n1, n2, . . . , nk

such that for all n 2 N,
Tn+njx 2 U for some j 2 {1, 2, . . . , k}. This means that for all n 2 N,

Tnx 2
k[

j=1

T�njU
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and so

O+
T

(x) ✓
k[

j=1

T�njU.

But y 2 O+
T

(x) and so

y 2
k[

j=1

T�njU ✓
k[

j=1

T�njU.

Therefore Tnjy 2 U for j = 1, 2, . . . , k and so O+
T

(y)\U 6= ?, a contradic-
tion. ⇤

The same proof shows that if T is invertible, then the full orbit closure
O

T

(x) of any uniformly recurrent point is a minimal, T -invariant, closed
subset of X.

Combining the characterizations of minimal systems, for metrizable
systems we obtain:

Corollary 4.21. If (X,T ) is a metrizable dynamical system, then x 2 X
is uniformly recurrent if and only if for all " > 0, there exists N 2 N such
that some iterate of x among any consecutive N iterates of x come within

" of any point in O+
T

(x).

Proof. Assume that x is uniformly recurrent. By Theorem 4.20, O+
T

(x)
is a minimal, T -invariant, closed subset of X. If U ✓ X is open and

U \O+
T

(x) 6= ?, then by Proposition 4.9 and the minimality of O+
T

(x), we
have

O+
T

(x) ✓
1[

n=1

T�nU.

But since O+
T

(x) is compact, only finitely many of the iterates of U are
needed to cover this set. Thus there exist n1, n2, . . . , nk

2 N such that

O+
T

(x) ✓
k[

j=1

T�njU.

Therefore, for all y 2 O+
T

(x), there exists n 2 N with 1  n  max{n1, n2, . . . nk

}
such that Tny 2 U . Taking U with diameter less than ", we have the state-
ment. The converse follows immediately from the definitions. ⇤

4.4. Diophantine approximation

We use the existence of uniformly recurrent points to derive some number
theoretic results, starting with a refinement of Kronecker’s Diophantine
result. First we prove the dynamical statement:
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Proposition 4.22. In a Kronecker system, every point is uniformly re-
current.

Proof. Assume that (X,T ) is Kronecker system and that Tx = ax for
some a 2 X. By Corollary 4.19, some point x0 2 X is uniformly re-
current. Assume that U is an open set containing the identity of X.
By the continuity of multiplication by x0 on the group X, we have that
Ux0 = {ux0 : u 2 U} is an open set containing the point x0. Choose n 2 N
such that Tnx0 2 Ux0. Then for any x 2 X, Tnx = anx = anx0x

�1
0 x 2

Ux0x
�1
0 x = Ux. The set of return times of x0 to any neighborhood of itself

is syndetic a syndetic set. It follows that the set of return times of x to any
neighborhood of itself is also syndetic. Thus x is uniformly recurrent. ⇤

We can apply this to an irrational circle rotation. It follows from the
proposition that every point is uniformly recurrent and so Theorem 4.20,
the forward orbit of any point is minimal. Thus an irrational circile ro-
tation is a minimal system. We use this to derive a statement about the
distributions of iterates of an irrational point in the unit interval:

Corollary 4.23. Assume that ↵ /2 Q and that 0  a < b  1. Then the
set

{n 2 N : a < n↵ mod 1 < b}
is syndetic.

Proof. Consider the Kronecker system T (x) = x+ ↵ mod 1 on the circle
T. (As usual for a rotation on the circle, we use additive notation.) By
Proposition 4.22, every point is uniformly recurrent and so the forward
orbit of 0 returns to any neighborhood of itself with bounded gaps. By
Proposition 4.8, the forward orbit of 0 is dense and so this orbit enters any
open set with bounded gaps. Since this orbit is exactly

{n↵ mod 1: n 2 N},

the corollary follows by applying this to the open interval (a, b). ⇤

This immediately implies Kronecker’s Theorem (Theorem 1.10). We
could also prove Corollary 4.23 directly, by taking at least [1/"]+1 iterates
in the orbit of ↵. Then using the Pigeonhole Principle, at least two points lie
within " of each other. By translating, we obtain the needed approximation.

The multidimensional version of Kronecker’s Theorem is left to Exer-
cise 4.15.
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4.5. Piecewise syndetic sets

The existence of uniformly recurrent points has implications for coloring
theorems. As for other coloring results, we translate the combinatorial
statement into a dynamical one, and then prove the dynamical statement
using topological dynamics. We start by defining the combinatorial objects:

Definition 4.24. A set A ⇢ N (or of Z) is thick if A contains arbitrarily
long intervals. The set A is piecewise syndetic if A is the intersection of a
syndetic set and a thick set.

A thick set is piecewise syndetic, as is a syndetic set. It is easy to
construct an example of a piecewise syndetic set that is neither thick nor
syndetic. Given a syndetic set, any thick set eventually contains an interval
whose length is greater than the gap size of the syndetic set. Thus any thick
set and any syndetic set have nontrivial intersection.

A finite coloring of the integers contains a monochromatic piecewise
syndetic set:

Theorem 4.25. If N = C1 [ C2 [ . . . [ C
r

is a finite partition, then for
some j 2 {1, 2, . . . , r}, C

j

is piecewise syndetic.

Proof. Consider the alphabet ⇤ = {1, 2, . . . , r} and let T be the shift
on ⇤N. Define x 2 ⇤N by x

n

= j if and only if n 2 C
j

and let X =
{Tnx : n � 0}. Since (X,T ) is a compact dynamical system, by Corol-
lary 4.19, X contains some uniformly recurrent point y. If the first entry
y1 of y is the symbol j, then j recurs syndetically in y with some gap M .
Since y lies in the orbit closure of x, there exist translates of x that come
arbitrarily close to y. Therefore, given any N 2 N, we can pick n 2 N
(depending on N) such that Tnx and y agree for the first N entries. This
means that x

n+1 = y1, xn+2 = y2, . . . , xn+N

= y
N

. In particular, within
the interval [n + 1, n + 2, . . . , n + N ] the letter j occurs in x with gaps
bounded by M . Thus the letter j occurs in x with gaps bounded by M on
arbitrarily long intervals and so the set C

j

is piecewise syndetic. ⇤

4.6. Minimality in more general dynamical
systems

The definitions given for a dynamical system (X,T ) where the transfor-
mation is generated by a single transformation T extend to a general dy-
namical system (X,G), where G is a semigroup of transformations acting
continuously on X.

Definition 4.26. If (X,G) is a dynamical system, then Y ✓ X is minimal
if it is closed, G-invariant and no proper, closed nonempty subset of Y is
g-invariant for any g 2 G.
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It follows immediately that this is equivalent to {gy : g 2 G} is dense
in Y for any y 2 Y . An analogous version of Proposition 4.9 can be proven
in this context (Exercise 4.20).

The notions of syndetic and uniform recurrence can also be extended
to this context:

Definition 4.27. A subset S of an abelian topological group (or semi-
group) G is syndetic if there exists a compact set K ✓ G such that for all
g 2 G, there exists some k 2 K with gk 2 S.

Definition 4.28. If (X,G) is a dynamical system, x 2 X is uniformly
recurrent if for every neighborhood U of x, {g 2 G : gx 2 U} is syndetic.

Again, the properties of uniformly recurrent points can be proven in
this context and we leave this to the exercises.

4.7. Transitivity

For some of the applications thus far, we have not used the full strength of
minimality, but rather a weaker condition known as transitivity. Instead of
all points having a dense orbit, we have only needed the existence of some
point whose orbit is dense.

Definition 4.29. The dynamical system (X,T ) is (topologically) transitive
if there exists some x 2 X such that O+

T

(x) is dense in X. More generally,
the dynamical system (X,G) is transitive if there exists x 2 X such that
{gx : g 2 G} = X. A point whose orbit is dense is said to be a transitive
point.

In keeping with previous conventions, we say more succinctly that T
is transitive.

In a system with noninvertible transformation T , transitivity is a one-
sided condition: we are only concerned with the existence of a point whose
forward orbit is dense. The existence of a point with a dense full orbit does
not necessarily imply the existence of a point with dense forward orbit
(Exercise 4.25).

If there are no isolated points in X and if x 2 X has a dense forward
orbit, then for any m 2 N, {Tnx : n � m} is dense, since the first m iterates
are only finitely many points and so do not accumulate anywhere.

One of the di↵erences between minimality and transitivity is that a
transitive system can contain a dense set of periodic points without all
points being periodic. In a minimal system, if some point is periodic, then
all points are periodic, since the orbit closure of any point is the entire
system. Similarly in a minimal system, if some point has a dense orbit,
then all points have dense orbit. On the other hand:
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Example 4.30. Consider the two-sided shift (⌦, T ) and a point x =
{x

n

}1
n=�1 2 ⌦. Then Tmx = x for some m 2 Z if and only if x

n

= x
n+m

for all n 2 Z. Thus the points fixed by Tm have the form

(. . . , x
m�1, x0, x1, . . . , xm�1, x0, x1, . . . , xm�1, x0, x1, . . .),

where x0, x1, . . . , xm�1 can be chosen freely. These periodic points are
dense in ⌦, but clearly not all points are of this form.

An isometry which is transitive is minimal (Exercise 4.3). We gener-
alize this:

Proposition 4.31. Assume that (X,T ) is a transitive metrizable dynami-
cal system with metric d. If there exists a metric on X equivalent to d with
respect to which T is an isometry, then T is minimal.

Note that we only assume that there is some metric on X with this
property.

Proof. Assume that d0 is a metric on X such that d0(x, y) = d0(Tx, Ty) for
all x, y 2 X. Since T is an isometry with respect to d0, T is invertible and
d0(T�1x, T�1y) = d0(x, y) for all x, y 2 X (Exercise 2.13). Furthermore, we
cannot have any isolated points without all points being isolated, in which
case the result is easy. Thus we can assume that there are no isolated
points.

By transitivity, we can choose x 2 X such that O+
T

(x) = X. Let y 2 X

and we show that O+
T

(y) = X.

Let z 2 X and let " > 0. Since the forward orbit of x is dense, there
exist n,m 2 N with n > m so that d0(Tmx, y) < "/2 and d0(Tnx, z) < "/2.
Thus

d0(z, Tn�my)  d0(z, Tnx) + d0(Tnx, Tn�my)

= d0(z, Tnx) + d0(x, T�my)

= d0(z, Tnx) + d0(Tmx, y)

< ".

Therefore, O+
T

(y) = X. ⇤

There are many equivalent formulations of transitivity:

Proposition 4.32. Assume that (X,T ) is a metrizable dynamical system
and that T is a homeomorphism. The following are equivalent:

(1) T is transitive.

(2) If U ⇢ X is a nonempty open set and TU ⇢ U , then U is dense.

(3) If U, V ⇢ X are nonempty open sets, then there exists n 2 N so
that TnU \ V 6= ?.
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(4) The set of transitive points is residual.

Because of condition (2), in analogy with ergodic theory, topological
transitivity is sometimes called (topological) ergodicity.

Proof. (1) =) (2). Assume that O+
T

(x) = X and let U ⇢ X be open,
invariant and nonempty. Choose m 2 N so that Tmx 2 U . Then by the
invariance of U , for any k 2 N, we have Tm+kx = T kTmx 2 T kU ⇢ U .
Therefore, the forward orbit of Tmx lies entirely in U . But since T is a
homeomorphism, it is onto. Thus the orbit of Tmx is also dense in X and
so U is dense in X.

(2) =) (3). Assume that U, V 6= ? are open sets in X. ThenS1
n=0 T

nU is also open and is T -invariant. By hypothesis this union is
dense, which implies in particular that TnU \ V 6= ? for some n � 1.

(3) =) (4). Let {V
j

} be a countable basis for the topology of
X. (Such a basis exists since a compact metric space is second count-
able.) Then for each j, W =

S1
n=1 T

�nV
j

is open. By hypothesis, for any
nonempty open set U in X, there exists m 2 N such that TmU\W 6= ? and
so W dense in X. Thus V =

T1
j=1

S1
n=1 T

�n(V
j

) is a countable intersection
of dense, open sets and so by the Baire Category Theorem, it is residual.
Take any x 2 V . This means that for all j, we have x 2 S1

n=1 T
�nV

j

and
for for some n 2 N, Tnx 2 V

j

. Thus for any x 2 V , O+
T

(x) enters each V
j

and since {V
j

} is a basis, this orbit is dense in X. Thus we have a residual
set of transitive points.

(4) =) (1). By the Baire Category Theorem, a residual set is dense
and thus is nonempty. Therefore we have a point with dense orbit. ⇤

In the absence of isolated points, we have only used the fact that T is
a homeomorphism in order to prove that condition (2) implies (3).

A two-sided shift has a dense orbit and so is transitive. Since it has
fixed points, it is not minimal. However, under certain mild conditions, the
existence of a dense two-sided orbit implies that of a dense one-sided orbit.

Proposition 4.33. Assume that (X,T ) is a metrizable dynamical system
and that X has no isolated points. If there is some point with a dense full
orbit, then there is a point with a dense forward orbit.

Proof. Assume that O
T

(x) = X. Since there are no isolated points, the
orbit of x not only enters any nonempty open set, but does so infinitely
often. Let B

j

be a sequence of balls around x whose radii tend to 0. Then
the orbit of x enters each of these balls and so there exists a sequence of
integers n

j

with |n
j

| ! 1 so that Tnjx ! x. This convergence holds for
infinitely many n

k

and so either for infinitely many positive or infinitely
many negative indices. For any fixed m 2 Z, by taking n

k

large enough,
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we have that n
k

+m is always positive or always negative, and so we also
have that Tnk+mx ! Tmx. Therefore, we either have

O
T

(x) ⇢ O+
T

(x)

or

O
T

(x) ⇢ O�
T

(x).

In the first case, since the closure of the full orbit is all of X, the
closure of the forward orbit is also all of X and we are done. In the
second case, assume that U and V are nonempty open subsets of X. Since

O�
T

(x) = X, there exist i < j < 0 so that T ix 2 U and T jx 2 V . Therefore
T jx = T j�iT ix 2 T j�iU and so T j�iU \ V 6= ?. By Proposition 4.32, T
is transitive. ⇤

Notes

The constructive proof of the Birkho↵ Recurrence Theorem given in Sec-
tion 4.2 appears in Weiss [62].

Most of the material of Section 4.3 is based on Furstenberg [27]. What
we are calling uniform recurrence is actually what Birkho↵ called recur-
rence. In his original work [5], Birkho↵ showed the existence not only of
a recurrent point in an arbitrary dynamical system, but of a uniformly
recurrent point.

Theorem 4.25 was proved by Tom Brown [11] using combinatorial
methods. Furstenberg [27] proved this theorem using topological dynamics.

Exercises

Exercise 4.1. Contstruct a dynamical system (X,T ) and a point x 2 X
such that x is recurrent but x does not lie in any minimal set.

Exercise 4.2. Show that if the dynamical system (X,T ) is minimal, then
T is onto.

Exercise 4.3. Show (without using Proposition 4.31) that if T is an isom-
etry of a compact metric space X and some x 2 X is transitive, then every
x 2 X is transitive.

Exercise 4.4. Show that any minimal set in a dynamical system (X,T )
is contained in the nonwandering set of T .

Exercise 4.5. Assume that T and S are rotations on the circle T. Show
that there exists a nonempty minimal closed set A ✓ T that is invariant
under both S and T .
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Exercise 4.6. Show that there exist minimal systems (X,T ) and (Y, S)
such that (X ⇥ Y, T ⇥ S) is not necessarily minimal. Find conditions on
the systems (X,T ) and (Y, S) such that (X ⇥ Y, T ⇥ S) is minimal.

Exercise 4.7. Show that an irrational circle rotation is not quasiperiodic.

Exercise 4.8. (1) Show that the preimage of a uniformly recurrent
point under a semi-conjugacy need not be uniformly recurrent.

(2) Show that one can have a uniformly recurrent point none of whose
preimages under a semi-conjugacy are uniformly recurrent.

Exercise 4.9. Show that the adding machine of Exercise 2.15 is minimal.
Show that every point in this system is quasiperiodic, but none is periodic.

Exercise 4.10. The Champernowne sequence ! is defined by concatenat-
ing in lexicographic order all finite words on 2 symbols:

! = 0100011011000001010011100101111 . . . .

Show that this sequence is recurrent (under the shift map), but is not
uniformly recurrent. Show that the orbit of ! is infinite.

Exercise 4.11. Consider the shift ⌦ on k symbols. Show that there exists
a nonperiodic point in ⌦ that is uniformly recurrent. (Thus the orbit closure
of this point is infinite and minimal.)

Exercise 4.12. Show that the Morse system (Example 4.10) contains in-
finitely many points and is minimal.

Exercise 4.13. Show that the Chacon system (Example 4.11) contains
infinitely many points and is minimal.

Exercise 4.14. Show that there exists a uniformly recurrent real valued
sequence !(n) such that

lim
N!1

1
2N + 1

NX

n=�N

!(n)

does not exist.

Exercise 4.15. (1) Show that the dynamical system (Tk, T ) is min-
imal, where ↵ = (↵1,↵2, . . . ,↵k

) 2 Tk, {1,↵1,↵2, . . . ,↵k

} is a
rationally independent set, and T : X ! X is defined by T (x) =
x+ ↵.

(2) Use this to derive a result in Diophantine approximation.

Exercise 4.16. Show that syndeticity is not partition regular, meaning
that there is a finite partition of the integers such that no piece of the
partition is syndetic.
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Exercise 4.17. Assume that A ✓ N is piecewise syndetic. If A = A1 [
A2 [ . . .[A

r

is a finite partition of A, show that for some j 2 {1, 2, . . . , r},
A

j

is piecewise syndetic.

Exercise 4.18. Show that the hypothesis that ↵1,↵2, . . . ,↵k

are rationally
independent is necessary in Theorem 1.13.

Exercise 4.19. Using the existence of a uniformly recurrent point in any
dynamical system, state and prove a strengthening of Hilbert’s Theorem
(Theorem 3.7).

Exercise 4.20. State and prove a version of Proposition 4.9 for a dy-
namical system (X,G), where G is a group of homeomorphisms acting
continuously on X.

Exercise 4.21. Show that if the dynamical system (X,G) is minimal,
then every point in X is uniformly recurrent. Conclude that any dynamical
system (X,G) contains uniformly recurrent points.

Exercise 4.22. Show that in a dynamical system (X,G), if x 2 X is uni-
formly recurrent, then {gx : g 2 G} is a closed minimal G-invariant subset
of X.

Exercise 4.23. This exercise generalizes Exercise 4.17. If (X,G) is a
dynamical system, a subset of G is thick if it has nonempty intersection
with every syndetic set in G. A piecewise syndetic set is defined to be the
intersection of a thick set and a syndetic set. Show that if S ✓ G is a
piecewise syndetic set and S = S1 [ S2 [ . . . [ S

r

is a finite partition, then
for some j 2 {1, 2, . . . , r}, S

j

is piecewise syndetic.

Exercise 4.24. Show that the shift on k symbols is transitive.

Exercise 4.25. Construct a dynamical system with infinitely many points
that have dense full orbit, but no point with dense forward orbit.

Exercise 4.26. Show that the product of two transitive systems need not
be transitive.

Exercise 4.27. If the dynamical system (X,T ) has no isolated points,
show that (X,T ) is transitive if and only if there exists some point in X
whose !-limit set is dense in X.

Exercise 4.28. State and prove a version of Proposition 4.32 for a dy-
namical system (X,G), where G is a group of homeomorphisms acting
continuously on X.

Exercise 4.29. Show that if (X,G) is transitive, there exists a dense G
�

subset of points with dense orbit. (A G
�

is defined to be a countable
intersection of open sets; see Appendix C.)



Chapter 5

Group extensions and
factor maps

5.1. Lifting properties from factors

If one wishes to show that a dynamical system has a certain property, it is
often easier to show that some subsystem has this property. Of course, this
does not necessarily imply that the whole system has this property. Yet,
one can still gain information if the subsystem is well chosen. Sometimes
one can lift the property from the subsystem to the general system; some-
times in order to derive a combinatorial consequence it su�ces to prove the
property on a subsystem. We make these notions of subsystems and lifting
precise, particularly defining some terms to clarify the unequal roles of the
subsystem and the whole system.

Definition 5.1. If (X,T ) and (Y, S) are dynamical systems, � : X ! Y is
a semiconjugacy if � is a continuous, surjective mapping such that �(Tx) =
S(�x) for all x 2 X. The system (Y, S) is a factor of (X,T ) if there is a
semiconjugacy � : X ! Y . The map � is called the factor map and the
system (X,T ) is said to be an extension of (Y, S).

We often omit explicit mention of the transformations on the spaces
and say that Y is a factor of X or that X an extension of Y .

In Example 2.11, we showed that the doubling map on T and the
squaring map on S1 are conjugate. Thus each system is a factor of the other
system. More interesting examples arise when this symmetry is broken:

Example 5.2. If (X,T ) and (Y, S) are dynamical systems, then each is a
factor of the product system (X ⇥ Y, T ⇥S). The projection map onto the
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first coordinate ⇡1 : X ⇥ Y ! X, defined by (x, y) 7! x, is continuous and
onto. Similarly, projection onto the second coordinate ⇡2 : X ⇥ Y ! Y ,
defined by (x, y) 7! y, is continuous and onto. Therefore ⇡1 and ⇡2 are
factor maps.

Example 5.3. A one-sided shift on k symbols is a factor of the two-sided
shift on k symbols, where the factor map takes the bi-infinite sequence
x = (. . . , x�1, x0, x1, . . .) to the one-sided sequence (x1, x2, . . .).

Example 5.4. Let ⌦ = {0, 1}Z and let T be the shift on ⌦. Let (Y, S) be
a dynamical system and assume that f : Y ! {0, 1} is a continuous map.
Define � : Y ! ⌦ by

y 7! (. . . , f(S�1y), f(y), f(Sy), f(S2y), . . .).

Since �(Y ) is a closed, shift invariant subset of ⌦, we have that (�(Y ), T )
is a subsystem of (⌦, T ). It is a factor of (Y, S) with factor map �.

There is a natural identification between a system and a factor:

Definition 5.5. If (Y, S) is a factor of (X,T ) with factor map � : X ! Y
and y 2 Y , then the fiber above y is defined to be {��1(y) : y 2 Y }.

If (Y, S) is a factor of (X,T ), then we can identify the system (X,T )
with the fibers {��1(y) : y 2 Y }. Thus the dynamics inside a factor place
constraints on the dynamics of the whole system.

It is clear that if Y is a factor of X, then the image of a fixed point
is a fixed point under the factor map. The same holds for periodic and
for recurrent points (Exercise 5.2). We are interested in the case that the
converse holds, meaning that a fixed, periodic or recurrent point lifts to a
fixed, periodic or recurrent point. In general, this is too much to expect:
it is possible to construct extensions that do not preserve any of these
properties (Exercises 2.12 and 3.10). However, under certain conditions on
the factor map, these properties do lift:.

Definition 5.6. Assume that (Y, S) is a dynamical system, G is a compact
metrizable group and � : Y ! G is a continuous map. Let X = Y ⇥G and
define T : X ! X by

(y, g) 7! (Sy,�(y)g).

The dynamical system (X,T ) is a group extension of (Y, S) via the group
G and factor map �.

A group extension (X,T ) of the system (Y, S) via the group G is
sometimes also referred to as the skew product of Y and G. When Y is a
metric space, X inherits the natural product measure from the metrics on
Y and on G.

It follows immediately from the definition that X is an extension of Y ,
since the projection (y, g) 7! y is a homomorphism of X onto Y .
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Example 5.7. Let T : T2 ! T2 be given by T (x, y) = (x+ ↵, x+ y + ↵).
Then (T2, T ) is a group extension of the Kronecker system (T, S), where
S(x) = x+ ↵ on T. The compact group G defining this extension is T and
the extension map � is the identity.

Definition 5.8. Assume that (Y, S) is a dynamical system, G is a compact
metrizable group, and let (X = Y ⇥ G, T ) be a group extension of (Y, S).
If h 2 G, the right translation R

h

: X ! X is defined by R
h

(y, g) = (y, gh)
for all (y, g) 2 X. Similarly, the left translation L

h

: X ! X is defined
by L

h

(y, g) = (y, hg) for all (y, g) 2 X. An automorphism of (X,T ) is a
homeomorphism P : X ! X that commutes with T .

An automorphism of X preserves recurrence properties of points. If
x 2 X is recurrent under T , then x 2 {Tnx : n 2 N}. Therefore if P is an
automorphism of (X,T ), then Px 2 {PTnx : n 2 N} = {TnPx : n 2 N},
and so Px is also recurrent under T .

Right (and left) translation act continuously on X, and are examples
of automorphisms of X:

Lemma 5.9. Assume that (X,T ) is a group extension of (Y, S) via the
group G and factor map �. Then for all h 2 G, right translation R

h

and
left translation L

h

are automorphisms of X.

Proof. It su�ces to show this for the right translation R
h

, as the proof
for the left translation is analogous.

Since G is a group, R
h

is a homeomorphism and we are left with
checking that R

h

and T commute for any h 2 G. For all (y, g) 2 X,

R
h

�
T (y, g)

�
=R

h

�
Sy,�(y)g

�
=
�
Sy,�(y)gh

�

=T (y, gh) = T
�
R

h

(y, g)
�
.

⇤

We use this to show that in a group extension, not only is some point
in the preimage recurrent, but every point in the preimage is recurrent:

Theorem 5.10. Assume that the dynamical system (X,T ) is a group ex-
tension of (Y, S) via the group G. If y 2 Y is recurrent, then (y, g) 2 X is
recurrent under T for all g 2 G.

Proof. Let e denote the identity inG. We first show that (y, e) is recurrent.
Considering the orbit of (y, e) under T , recurrence of y implies that there
exists g1 2 G such that

(y, g1) 2 {Tn(y, e) : n 2 N}.
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Applying the right translation R
g1 , we have that

(y, g21) 2 {Tn(y, g1) : n 2 N},
which in turn implies that

(y, g21) 2 {Tn(y, e) : n 2 N}.
Iterating, we have that for each m 2 N,

(y, gm1 ) 2 {Tn(y, e) : n 2 N}.

But {gm1 : m 2 N} is the orbit of e in the compact groupG1 = {gm1 : m 2 N},
endowed with the transformation of rotation by g1. In particular, it is a
Kronecker system and so by Example 3.4 every point is recurrent. This
means that

(y, e) 2 {Tn(y, e) : n 2 N}
and so (y, e) is recurrent. For arbitrary (y, g), note that R

g

(y, e) = (y, g).
By Lemma 5.9, R

g

is an automorphism and so (y, g) is also recurrent. ⇤

5.2. Diophantine approximation

We use the lifting of recurrent points to obtain classically results in Dio-
phantine approximation:

Corollary 5.11. For all ↵ 2 R and all " > 0, there exist n,m 2 Z such
that |n2↵�m| < ".

Proof. Let T : T2 ! T2 be given by

T (x, y) = (x+ ↵, 2x+ y + ↵).

Then (T2, T ) is a group extension of the Kronecker system x 7! x + ↵
on T. Therefore every point in T2 is recurrent under T . In particular,
the orbit of (0, 0) under T returns to itself. Since this orbit is given by
Tn(0, 0) = (n↵, n2↵), we obtain the statement. ⇤

More generally, via a series of group extensions we prove a Diophantine
result for any polynomial:

Theorem 5.12. Assume that p(x) is a polynomial with real coe�cients
and p(0) = 0. Then for all " > 0, there exist n 2 N and m 2 Z such that
|p(n)�m| < ".
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Proof. Assume that p(x) has degree d � 0. Inductively, define

p
d

(x) = p(x)

p
d�1(x) = p

d

(x+ 1)� p
d

(x)

p
d�2(x) = p

d�1(x+ 1)� p
d�1(x)

...

p1(x) = p2(x+ 1)� p2(x)

p0(x) = p1(x+ 1)� p1(x).

Then p
j

(x) has degree less than or equal to j for j = 0, 1, . . . , d and thus
p0(x) = ↵ for some constant ↵. Define T1 : T1 ! T1 by T1(x) = x+↵. For
j � 2, define T

j

: Tj ! Tj by

T
j

(x1, x2, x3, . . . , xj

) = (x1 + ↵, x2 + x1, x3 + x2, . . . , xj

+ x
j�1).

(As usual, we omit the mod 1 from each term.) Then for j = 1, . . . , d,
each (Tj , T

j

) is a group extension of the dynamical system (Tj�1, T
j�1).

By Theorem 5.10, each point is recurrent.

Consider the orbit of
�
p1(0), p2(0), . . . , pd(0)

�
under T = T

d

. Using the
definition of the polynomials p

i

, we have that the (n+1)st iterate under T
is �

p1(n), p2(n), . . . , pd(n)
�
.

Since this point is recurrent, it returns arbitrarily close to

(p1(0), p2(0), . . . , pd(0)).

But p
d

(n) = p(n), and so p(n) returns arbitrarily close to 0 mod 1, which
is the statement of the theorem. ⇤

5.3. Lifting uniformly recurrent points

We have already seen that group extensions lift recurrent points to re-
current points. We now show that the same result holds for uniformly
recurrent points:

Theorem 5.13. Assume that (X,T ) is a group extension of the dynamical
system (Y, S) via the group G and factor map �. If y0 2 Y is uniformly
recurrent in (Y, S), then for any g0 2 G, (y0, g0) is uniformly recurrent in
(Y ⇥G, T ).

Proof. Assume that y0 2 Y is uniformly recurrent. Then its orbit closure
is a minimal set and so without loss of generality, we can assume that the
system (Y, S) is minimal. Let Z ✓ Y ⇥ G be a minimal set under the
transformation T (y, g) = (Sy,�(y)g), where � : Y ! G is the factor map.
Let ⇡ : Y ⇥ G ! Y denote projection onto the first coordinate, meaning
that ⇡(y, g) = y.
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Since ⇡ is a homomorphism, ⇡(Z) is a minimal subset of Y (Exer-
cise 5.8). As Y itself is minimal, ⇡(Z) = Y . Consider right translation
R

g

0 : Y ⇥ G ! Y ⇥ G, where R
g

0(y, g) = (y, gg0). Since this is an auto-
morphism of (Y ⇥ G, T ), we also have that R

g

0(Z) is a minimal subset of
Y ⇥G and

[

g

02G

R
g

0(Z) = ⇡�1{⇡(Z)} = ⇡�1(Y ) = Y ⇥G.

Therefore each point of Y ⇥ G lies in a minimal subset and so each point
is uniformly recurrent. ⇤

We use this to improve the Diophantine results for polynomials, show-
ing that not only can we solve the Diophantine inequality, but the set of
solutions is syndetic. Hermann Weyl proved the multi-dimensional version:

Corollary 5.14. Assume that p1(x), p2(x), . . . , pk(x) are polynomials with
real coe�cients and p

j

(0) = 0 for j = 1, 2, . . . , k. Then for any " > 0,

{n 2 Z : |p
j

(n)�m
j

| < " for some m1,m2, . . . ,mk

2 Z}
is syndetic.

Proof. Combining Theorem 5.13 and the group extensions defined in The-
orem 5.12, we have that every point in these dynamical systems is uniformly
recurrent. ⇤

Notes

Most of the material in this chapter is based on Furstenberg [27].

Corollary 5.11 was proved by Hardy and Littlewood [35], using geo-
metric properties of the numbers. The idea for another proof is contained
in Exercise 8.7. Theorem 5.12 and Corollary 5.14 were originally proved
by Weyl [63], using number theoretic methods. The proofs given here are
based on Furstenberg [27].

Exercises

Exercise 5.1. If (X,T ) and (Y, S) are minimal systems, S is invertible
and � : X ! Y is a semiconjugacy, show that for any nonempty open set
U in X, �(U) has nonempty interior.

Exercise 5.2. If (Y, S) is a factor of (X,T ), show that a fixed point in X
maps under the factor map to a fixed point in Y . Show that a recurrent
point in X maps to a recurrent point in Y .

Exercise 5.3. Show that a factor of a transitive system is transitive.
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Exercise 5.4. Show that a factor of a minimal system is minimal.

Exercise 5.5. Show that a factor map � : X ! Y defines an equivalence
relation ⇠ on X, where x ⇠ x0 if and only if �(x) = �(x0). Conversely,
show that an equivalence relation on X defines a factor of X.

Exercise 5.6. Assume that S is an automorphism of a minimal system
(X,T ) and assume that Sx = x for some x 2 X. Show that S is the
identity map.

Exercise 5.7. Use a particular choice of a group extension to show that
if x 2 X is a recurrent point under T , then x is recurrent under Tn for any
n 2 N. (Group extensions are not needed for this and this problem has
already appeared in Exercise 3.12.)

Exercise 5.8. Show that if (Y, S) is a factor map of (X,T ) with factor
map � and Z ✓ X is minimal, then �(Z) is minimal.

Exercise 5.9. Show that x is uniformly recurrent under T if and only if
it is uniformly recurrent under Tn for any n 2 N.

Question 5.15. Given a dynamical system (X,T ), does there always exist
x 2 X such that (x, x, . . . , x) is uniformly recurrent under T⇥T 2⇥. . .⇥T k?





Chapter 6

Complexity

6.1. Alphabets and words

Definition 6.1. A finite set A of symbols is called the alphabet. A word
w = w1 . . . wN

with w1, . . . , wN

2 A is a finite string of elements from A
and its length |w| is the number of elements N in the string. The set of
all words of length N � 0 is denote W

N

(A), with the convention that the
word of length 0 is the empty word, and the set of all words is denoted
W(A).

Thus

W(A) =
[

N�0

W
N

(A).

Given two words w, v 2 W, the concatenation wv is the word of length
|w| + |v| formed by the string w followed by the string v. Concatenation
is an associative operation and the empty word is the unit element of the
operation.

Definition 6.2. A one sided infinite word in the alphabet A is an element
⌘ = (⌘

n

)
n2N 2 AN. A two sided infinite word or bi-infinite word in the

alphabet A is an element ⌘ = (⌘
n

)
n2Z 2 AZ. A finite word w = w1 . . . wk

occurs in the (finite, one sided infinite, or bi-infinite) word ⌘ = (⌘
n

) if there
exists some m such that ⌘

m

= w1, ⌘m+1 = w2, . . . , ⌘m+k�1 = w
k

. We also
say that the word ⌘ contains the word w.

Note that a word can refer either to a finite sequence of letters in the
alphabet A or to an infinite sequence. It is usually clear from the context
which is meant, and if confusion may arise, we write finite or infinite word,
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with the convention that infinite could be either one sided or two sided.
We usually reserve Greek letters for infinite words and Roman letters for
finite words.

The dynamical notions we have already defined extend to similar def-
initions for infinite words:

Definition 6.3. An infinite word ⌘ 2 AN (respectively, a word ⌘ 2 AZ)
is periodic if there exists m 2 N such that ⌘

n

= ⌘
n+m

for all n 2 N
(respectively, for all n 2 Z). For periodic ⌘, the smallest such m is called
the period of ⌘.

An infinite word ⌘ (in AN or in AZ) is recurrent if every finite word
w 2 ⌘ that occurs in ⌘ occurs in ⌘ infinitely often.

An infinite word ⌘ (in AN or in AZ) is uniformly recurrent if for every
finite word w 2 ⌘ that occurs in ⌘, there exists M = M(w) such that any
word of length M that occurs in ⌘ contains the word w.

It follows immediately from the definitions that a periodic word is
recurrent and a uniformly recurrent word is recurrent, but the converse
implications are false (Exercise 6.1).

6.2. Complexity of words

Definition 6.4. For an infinite word ⌘, we define the complexity function
P
⌘

: N ! N by setting P
⌘

(n) to be the number of distinct words of length
n that occur in ⌘.

By definition, P
⌘

(1) is the number of distinct letters that appear in ⌘
and in particular, for any non-constant ⌘, we have that P

⌘

(1) � 2. It also
follows immediately from the definition that for all n 2 N,
(6.1) P

⌘

(n)  P
⌘

(n+ 1).

Complexity and periodicity are closely related:

Theorem 6.5. For recurrent ⌘ 2 AZ, the following are equivalent:

(1) ⌘ is periodic.

(2) P
⌘

(n) is bounded for all n 2 N.
(3) There exists n0 2 N such that P

⌘

(n0)  n0.

Proof. The implication (1))(2) is obvious by considering the period of ⌘
and the implication (2))(3) is trivial. We are left with showing (3))(1).

We can assume that P
⌘

(1) � 2, or the statement trivially holds.
Combining (6.1) and the assumption that there exists n0 2 N such that
P
⌘

(n0)  n0 � 1, we have that there exists k 2 N with k  n0 such that
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P
⌘

(k) = P
⌘

(k+ 1). This means that for any word w of length k, there is a
unique way to continue the word to the right and a unique way to continue
the word to the left. Since each word of length k appears infinitely often,
in particular a word of length k occurs twice. As each such occurrence
is continued in a unique way, once we have the same window of length k
twice, it continues identically in both directions and thus is periodic. ⇤

Note that the assumption of recurrence was only used in the implica-
tion (3))(1). Rephrasing this result, and using the fact that there are only
finitely many words of any given length, we have the basic relation between
complexity and periodicity that was proven by Morse and Hedlund:

Corollary 6.6. A word ⌘ 2 AZ is periodic if and only if there exists n0 2 N
such that P

⌘

(n0)  n0.

More generally, we have:

Corollary 6.7. If ⌘ 2 AZ is recurrent, then either ⌘ is periodic or P
⌘

(n) �
n+ 1 for all n 2 N.

The class of non-periodic sequences achieving the minimal complexity
of Corollary 6.7 are called Sturmian sequences, and are studied further in
Section 6.4. For one sided infinite sequences, we have a similar result (see
Exercise 6.2).

6.3. An associated dynamical system

As before, we construct a dynamical system associated to a sequence ⌘ 2
AZ, by building a compact metric space with a shift. Namely, endowA with
the discrete topology and AZ with the product topology. Setting X = AZ,
we define the shift T : X ! X by

T⌘(n) = ⌘(n+ 1).

It is an easy exercise to check that the shift T is continuous, and more ore
generally, for all m 2 Z, this defines the continuous iterates Tm : X ! X
by

Tm⌘(n) = ⌘(m+ n).

Defining
O(⌘) = {Tm⌘ : m 2 Z}

and setting X
⌘

= O(⌘), we obtain a topological dynamical system (X
⌘

, T )
(Exercise 6.3).

Periodicity of the sequence ⌘ is reflected in the associated dynamical
system. Namely, a sequence ⌘ is periodic if and only if the orbit O(⌘) is
finite, meaning that the associated dynamical system (X

⌘

, T ) is finite.
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Definition 6.8. Given ⌘ 2 AZ and a finite word w = w
m

. . . w
m+k

that
occurs in ⌘, the cylinder set associated to w is the set

{⇢ 2 X
⌘

: ⇢
m

= w
m

, . . . , ⇢
m+k

= w
m+k

}.

The cylinder sets are clopen sets and form a basis for the topology of
X

⌘

(Exercise 6.4).

For one sided ⌘ 2 AN, the same constructions of a dynamical system
and cylinder sets apply.

6.4. Sturmian sequences

Definition 6.9. A recurrent sequence ⌘ 2 AZ is said to be Sturmian if
P
⌘

(n) = n+ 1 for all n 2 N.

The restriction of the definition to recurrent sequences is to eliminate
trivial examples, such as the sequence with a 1 at ⌘0 and 0 everywhere else.

The dynamical system associated to a Sturmian sequence is minimal
(Exercise 6.8).

It turns out that Sturmian sequences can be produced from rotations.
For ↵ 2 [0, 1), recall that the rotation R

↵

: [0, 1] ! [0, 1] is defined by
R

↵

(x) = x+↵ (mod 1). Consider the partition P of [0, 1) into the intervals
[0, 1�↵) and [1�↵, 1). Fixing x 2 [0, 1), we code the orbit of x under the
rotation R = R

↵

by which interval of this partition the iterates of x fall
into. Namely, define a bi-infinite sequence ⌘ 2 {0, 1}Z by

(6.2) ⌘
n

=

(
0 if Rnx 2 [0, 1� ↵)

1 if Rnx 2 [1� ↵, 1).

This is a coding of the orbit of the rotation with respect to the partition
{[0, 1�↵), [1�↵, 1)} of [0, 1]. The choice of how to deal with the endpoints
of the intervals is arbitrary and alternately, we could have taken the coding
corresponding to the partition {(0, 1� ↵], (1� ↵, 1]}. For irrational ↵, the
codings obtained with respect to each of these partitions would agree after
a certain point, and so we work with the first partition.

Set I0 = [0, 1�↵) and I1 = [1�↵, 1). Given a finite word w = w1 . . . wn

in the alphabet {0, 1}, define the set I(w) generated by it as

I(w) = I(w1 . . . wn

) =
n�1\

i=0

R�i

(I
wi+1).

Then the sequence w is contained in ⌘, as defined in (6.2), if and only if
there exists k 2 Z such that

x+ k↵ (mod 1) 2 I(w).
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For irrational ↵, for any x 2 [0, 1), we have that the sequence (x + n↵
(mod 1))

n2Z is dense in [0, 1), meaning that w is contained in ⌘ if and only
if I(w) 6= ?. This implies that the set of words contained in ⌘ does not
actually depend on the particular choice of x 2 [0, 1). For a fixed irrational
↵, the collection of all such sequences ⌘ is a shift invariant subset of {0, 1}Z.
Taking the closure, we obtain a closed, shift invariant spaceX(↵) ⇢ {0, 1}Z,
called a Sturmian shift.

Moreover, for irrational ↵, we have that X(↵) is minimal and the
number of words of size n in X(↵) is exactly n+1 (Exercises 6.9 and 6.10).

Combining this information, Hedlund and Morse showed that irra-
tional rotations characterize all Sturmian sequences over an alphabet with
two letters:

Theorem 6.10. A sequence ⌘ 2 {0, 1}Z is Sturmian if and only if there
exists an irrational ↵ 2 (0, 1) and x 2 [0, 1) such that ⌘ is the coding
of the orbit of x under rotation by ↵ either with respect to the partition
{[0, 1�↵), [1�↵, 1)} or with respect to the partition {(0, 1�↵], (1�↵, 1]}.

6.5. Higher dimensions

A natural generalization of studying sequences ⌘ 2 AZ for some finite
alphabet A is to consider higher dimensional configurations, meaning ⌘ 2
AZd

for some d � 1. Similarly, the notions of periodicity and complexity
can be extended to higher dimensions, with some choices as to the way
each notion is generalized.

For periodicity, one can have up to d directions of periodicity:

Definition 6.11. A configuration ⌘ 2 AZd
is periodic if there exists ~m 2

Zd, ~m 6= ~0, such that ⌘(~m + ~n) = ⌘(~n) for all ~n 2 Zd. If there are d
independent directions of periodicity, then ⌘ is said to be fully periodic.

Definition 6.12. The rectangular complexity P
⌘

(n1, . . . , nd

) of ⌘ 2 AZd
is

defined to be the number of distinct patterns in ⌘ that fill an n1 ⇥ . . .⇥n
d

parallelepiped.

The square complexity P
⌘

(n, . . . , n) of ⌘ 2 AZd
is defined to be the

number of distinct patterns in an n⇥ . . .⇥ n cube. More generally, if S is
any shape, we can define P

⌘

(S) to be the number of distinct patterns in ⌘
that fill a shape S.

Full periodicity does not give much information:

Proposition 6.13. For d � 1, the configuration ⌘ 2 AZd
is fully periodic

if and only if P
⌘

(n1, . . . , nd

) is bounded.
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Proof. If ⌘ is periodic, the result follows immediately by counting number
of patterns in a period.

Conversely, assume that P
⌘

(n1, . . . , nd

)  N for all n1, . . . , nd

2 N.
Then each 1-dimensional complexity, determined by fixing all coordinates
but the ith one, satisfies

P
⌘

(1, . . . , 1, n
i

, 1, . . . , 1)  N.

By Corollary 6.6, each row is periodic with period  N . Thus N !d is a
period for ⌘. ⇤

Instead of using rectangular complexity, one could prove the same
result using square complexity. In particular, bounded complexity does
not give much information.

Meurice Nivat conjectured that there is a relationship between period-
icity and complexity in two dimensions:

Conjecture 6.14. Let ⌘ 2 AZ2
. If there exist n, k 2 N such that P

⌘

(n, k) 
nk, then ⌘ is periodic.

This conjectured relation is the existence of a single direction of peri-
odicity, and not necessarily double periodicity (Exercise 6.11). If the con-
jecture holds, it is optimal in some sense: for d = 2, there exist non-periodic
configurations of complexity nk + 1, by setting ⌘0,0 = 1 and ⌘

n1,n2 = 0 for
(n1, n2) 6= (0, 0).

It is significant that such behavior is a 2-dimensional phenomenon. In
three dimensions, Robert Tijdeman gave the following example:

Example 6.15. Fix k 6= 0. Set

⌘
i,0,0 = 1 for all i 2 N

⌘0,j,k = 1 for all j, k 2 N
⌘
i,j,k

= 0 otherwise.

This example has 2 non-parallel, non-intersecting lines of 1’s and 0’s else-
where, which is not possible unless there are at least 3 dimensions of free-
dom available.

Then one can check that for all n � 3, P
⌘

(n, n, . . . , n)  n3, but ⌘ is
not periodic.

More precisely,

P
⌘

(n, n, . . . , n) =

(
2n2 + 1 if 2  n  k

n2(n� k) + 2nk if n � k.

Unlike the Morse-Hedlund Theorem, the Nivat Conjecture is not an
equivalence:
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Example 6.16. There exist periodic configurations ⌘ in d = 2 with P
⌘

(n, k) >
nk for all n, k 2 N, and even

P
⌘

(n, k) = 2n+k�1 for all n, k � 1.

One can construct such configurations by setting ⌘
i,j

= u
i+j

, where u
is the binary Champernowne word, meaning that one takes all words in
lexicographic order and concatenates them. Then P

k

(u) = 2n and ⌘ is
periodic in a single direction.

There are some partial results towards the Nivat Conjecture, and the
strongest result to date is:

Theorem 6.17. If ⌘ 2 AZ2
and there exist n, k 2 N such that P

⌘

(n, k) 
nk/2, then ⌘ is periodic.

Notes

Morse and Hedlund proved Corollaries 6.6 and 6.7 in [43]. The term Stur-
mian sequences was introduced in [44] and such sequences further studied
by Coven and Hedlund [16].

Tijdeman [53] gave Example 6.15 in d = 3 and this was generalized
to all dimensions by Sander and Tijdeman [53], who showed there exists
aperiodic ⌘ with P

⌘

(n, . . . , n) = 2nd�1+1. Berthé and Vuillon [4] and Cas-
saigne [15] constructed examples showing that Nivat is not an equivalence,
such as the one in Example 6.16.

Nivat’s Conjecture, under the stronger assumption that there exists
n 2 N with P

⌘

(2, n)  2n (equivalently P
⌘

(n, 2)  2n) was proven by
Sander and Tijdeman [55]. If one assumes the existence of n, k 2 N with
P
⌘

(n, k)  nk/144, periodicity of ⌘ was proven by Epifanio, Koskas and
Mignosi [18] and periodicity was proven under the assumption of existence
of n, k 2 N with P

⌘

(n, k)  nk/16 was proven by Quas and Zamboni [47].
Theorem 6.17 was proven in [17].

Exercises

Exercise 6.1. Give an example of an infinite word in a finite alphabet A
that is recurrent but is not uniformly recurrent.

Exercise 6.2. The infinite word ⌘ 2 AN is ultimately periodic if there exist
integers N,m 2 N such that for all n � N , ⌘(n + m) = ⌘(n). If ⌘ 2 AN

and there exists n0 2 N such that P
⌘

(n0)  n0, show that ⌘ is ultimately
periodic.

Exercise 6.3. Show that the system (X
⌘

, T ) defined in Section 6.3 is a
topological dynamical system.
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Exercise 6.4. Show that the cylinder sets of Definition 6.8 and that they
form a basis for the open sets in the topology of X

⌘

.

Exercise 6.5. Show that a word ⌘ 2 AZ is recurrent if and only if the
shift T in the associated dynamical system (X

⌘

, T ) is onto.

Exercise 6.6. Show that every Sturmian sequence is recurrent.

Exercise 6.7. For any k 2 N, show that there exists a sequence ⌘ 2 AN

such that P
⌘

(n) = n+ k for all n 2 N.

Exercise 6.8. Show that the dynamical system associated to a Sturmian
sequence ⌘ 2 AZ is minimal.

Exercise 6.9. Show that for irrational ↵, the Sturmian system X(↵) is
minimal. (Hint: Show that the orbit closure O(⌘) is the set of sequences
obtained by coding every point on the unit circle.)

Exercise 6.10. Show that for irrational ↵, the sequence ⌘ defined in (6.2)
is Sturmian. (Hint: check that for a word w of length n, the sets I(w)
are connected and are bounded by the end points {k(1� ↵) (mod 1) : k =
0, . . . , n� 1}.)
Exercise 6.11. Show that there exists ⌘ 2 AZ2

such that for some n, k 2 N,
P
⌘

(n, k)  nk but ⌘ is not doubly periodic.



Chapter 7

Times p, Times q

7.1. Multiplicatively independent semigroups

We have already seen examples of subsets A of the integers such that for any
irrational ↵, the subset {n↵ mod 1: n 2 A} is dense in the interval [0, 1].
Examples of such A include the set of all natural numbers (Corollary 4.23)
and polynomial sequences (Theorem 5.12). In this chapter we produce
other examples of such sequences.

Definition 7.1. Integers p, q > 1 are multiplicatively independent if they
are not both rational powers of a single integer.

Thus relatively prime integers, such as 2 and 3, are multiplicatively
independent, but so are some pairs of integers that are not relatively prime,
such as 2 and 6. The integers 4 and 8 are not multiplicatively independent.

Given integers p, q > 1, by taking products of powers of these integers
we obtain a semigroup S of natural numbers, meaning a subset of natural
numbers that is closed under multiplication. We can write this subset as

S = {pmqn : m,n 2 Z,m, n � 0}.
(A semigroup di↵ers from a group in that there is no requirement that it
contains an identity or inverses; see Appendix B.1.)

Definition 7.2. A subset S = {s1 < s2 < . . .} of natural numbers is
nonlacunary if

lim
j!1

s
j+1

s
j

= 1.

Lemma 7.3. A semigroup in N that contains a pair of multiplicatively
independent integers is nonlacunary.

69
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Proof. Assume that p, q > 1 are multiplicatively independent integers in
the semigroup. Consider the semigroup

�
pmqn : m,n 2 N [ {0} .

Enumerate the elements of this semigroup in increasing order and write
them as s1 < s2 < . . . . We show that

sj+1

sj
! 1 as j ! 1.

Let " > 0. Since log p/ log q is irrational (Exercise 7.1), there exist
m,n 2 N such that

0 < m� n
log p
log q

<
log(1 + ")

log q
.

Multiplying by log q and exponentiating, we have that

1 <
qm

pn
< 1 + ".

Similarly, there exist m0, n0 2 N such that

1 <
pm

0

qn0 < 1 + ".

Let N 2 N be chosen such that s
N

= pnqn
0
. We claim that for any j > N ,

1 <
s
j+1

s
j

< 1 + ".

For j > N , writing s
j

= paqb, then either a > n or b > n0. If a > n, then
s
j

= pnpa�nqb. Setting x = pa�nqm+b, we have that

1 <
x

s
j

=
qm

pn
< 1 + ".

Thus x � s
j+1 and

1 <
s
j+1

s
j

 x

s
j

=
qm

pn
< 1 + ".

Similarly, if b > n0, the same inequality holds. Since " was arbitrary, the
limit of the ratios is 1 and we have the statement of the lemma. ⇤

Furstenberg showed that the orbit of any irrational under a nonlacu-
nary semigroup is dense in the circle:

Theorem 7.4. If S ⇢ N is a nonlacunary semigroup and ↵ 2 R is an
irrational, then

{s↵ mod 1: s 2 S}
is dense in [0, 1].
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This immediately gives a Diophantine result, as one can use rationals
with denominators from the nonlacunary semigroup to approximate any
point in the circle arbitrarily well. (An analogous equivalence is stated in
Exercise 3.9.) However, this theorem di↵ers from the other Diophantine re-
sults we have proven thus far, such as Corollary 4.23 or Theorem 5.12. The
previous results can all be strengthened to prove a stronger result, showing
that not only does one have density of the iterates, but they are spread
out uniformly (called equidistributed) throughout the circle. This means
that the probability of finding an iterate in a particular interval is propor-
tional to the length of this interval. The dynamical methods needed to
prove these theorems rely on measures and ergodic theory, which is beyond
the scope of this book. On the other hand, there exist irrationals whose
orbit is not equidistributed in the circle under the semigroup generated by
a pair of multiplicatively independent integers and so Theorem 7.4 cannot
be strengthened in this way.

7.2. Proof of Furstenberg’s Diophantine
Theorem

Given an integer p > 1, we say that A ⇢ T is p-invariant if it is invariant
under multiplication by p. Thus,

pa mod 1 2 A for all a 2 A.

In order to prove Theorem 7.4, it su�ces to show:

Theorem 7.5. Let p, q > 1 be multiplicatively independent integers. As-
sume that A ⇢ T is closed, infinite and p and q-invariant. Then A = T.

Theorem 7.4 follows, since the closure of an irrational point under a
nonlacunary semigroup satisfies these hypotheses, and so by Theorem 7.5
must be all of T. In fact, Theorem 7.4 is equivalent to Theorem 7.5 (Exer-
cise 7.2).

For x 2 T, we let kxk denotes the distance between x and 0 taken in
the circle. Thus kxk  1/2 for all x 2 T.

We start with by proving Theorem 7.5 under the additional hypothesis
that 0 is a limit point of the subset:

Proposition 7.6. Assume that A ⇢ T is closed, infinite, p and q-invariant
and assume that 0 is a limit point of A. Then A = T.

Proof. Assume that A ⇢ T satisfies the hypotheses of the proposition.
Let S be the semigroup generated by p and q and order the elements of S
by size. Thus we can write S = {s1 < s2 < . . .}.
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Fix " > 0. By Lemma 7.3, we can choose N so that for all n � N ,

s
n+1

s
n

< 1 + ".

Since 0 is a limit point of A, we can pick a 2 A with a 6= 0 such that
kak < "/s

N

. Consider the (finite) set:

{sa mod 1: s 2 S, s
N

 s  1
kak}.

This is a subset of A, since A is p and q-invariant. Furthermore, we claim
that there is an element of this subset in every interval of size " in T: if
n > N , then

k(s
n+1 � s

n

)ak =

����
�s

n+1

s
n

� 1
�
a

����

< k"s
n

ak < ",

since s
n

 1/kak. This means that for n > N , the di↵erences (s
n+1 � s

n

)a
are bounded by " and for s � 1/kak, these iterates wrap around the circle.
It follows that A has nontrivial intersection with every interval of size ".
Since " is arbitrary, A = T. ⇤

The next step is to generalize this proposition for rational limit points.
We begin with a lemma.

Lemma 7.7. If p, q, r 2 N are pairwise relatively prime, then there exists
t 2 N such that pt ⌘ qt ⌘ 1 mod r.

Proof. Consider the powers p, p2, p3, . . ., taken modulo r. (Note that none
are 0 mod r, since p and r are relatively prime.) By the Pigeonhole Prin-
ciple, for some i 6= j, we have that pi ⌘ pj mod r. Without loss, we can
assume that j > i. Then pu ⌘ 1 mod r, where u = j � i. Similarly, there
exists v 2 N such that qv ⌘ 1 mod r. Set t = uv. Then

pt = (pu)v ⌘ 1 mod r

and

qt = (qv)u ⌘ 1 mod r.

⇤

We use this lemma to reduce the case of a rational limit point to that
of zero being a limit point:

Proposition 7.8. Assume that A ✓ T is closed, infinite, p and q-invariant
and assume that A has a rational limit point. Then A = T.
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Proof. Assume that m/r is a rational limit point of A. Without loss,
we can assume that m and r are relatively prime. By Lemma 7.7, there
exists t 2 N such that pt ⌘ qt ⌘ 1 mod r. Then pt and qt still generate a
nonlacunary semigroup. Consider the set

A0 = A�m/r = {a�m/r : a 2 A}.
This set is infinite, closed, and invariant under multiplication by pt and
qt, since A is. Moreover, since m/r is a limit point of A, we have that 0
is a limit point of A0. Thus we can apply Proposition 7.6 to obtain that
A0 = T. Therefore A = T. ⇤

By Proposition 7.8, the proof of Theorem 7.5 has been reduced to the
following: any closed, infinite subgroup of the circle that is invariant under
multiplication by p and q contains a rational limit point. We now complete
this argument:

Proof. (of Theorem 7.5) Let A0 denote the set of limit points of A. Then
A0 is also nonempty, closed, and p and q-invariant. If A0 contains a rational
point, then we are finished. So assume that A0 consists only of irrational
points. Thus, we can assume that A0 is a closed, p and q-invariant set
of irrationals in T. Clearly it is infinite, since if A0 contains one irrational
point and is p-invariant, then it contains infinitely many (irrational) points.

Consider the di↵erence set

A0 �A0 = {a1 � a2 : a1, a2 2 A0}.
Then 0 2 A0 �A0 is a limit point of this di↵erence, since A0 is infinite and
so accumulates somewhere in T. Since A0 is closed and p and q-invariant,
so is A0 � A0. Thus by Proposition 7.8, A0 � A0 = T. In particular, A0 is
uncountable.

Define

P = {x 2 A0 : every neighborhood of x contains uncountably

many points of A0}.
Since multiplication by p and q is continuous, P is p and q-invariant. Set
C = A0\P (the set theoretic di↵erence). Let B be a countable basis of open
sets for the topology of the circle. If x 2 C, letting U be a neighborhood
of x that contains only countably many points of A0, we have some basis
element B 2 B such that x 2 B ✓ U . Thus B contains countably many
points of A0. Using these basis elements, we can cover C. Since there are
countably many choices for the basis elements, it follows that C itself is
countable. Furthermore C is p and q-invariant, since both A0 and P are.

If x 2 P and U is any neighborhood of x, then U contains a point of
P . It follows that U contains uncountably many points of A0. Therefore
x 2 P and so P is closed. If x 2 P and U is any neighborhood of x, then
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U contains uncountably many points in A0, of which only countably many
are in C. Thus U contains at least 2 points of P , meaning that any point
in P is a limit point of P . Thus P is perfect.

Define

(7.1) P
k

=
�
(x2�x1, x3�x2, . . . , xk+1�x

k

) : x
j

2 P for j = 1, 2, . . . , k
 
.

Claim: P
k

= Tk.

We proceed by induction. For k = 1, note that P is a closed, infinite
p and q-invariant set. (More holds: since P is perfect, it must be uncount-
able.) Therefore P � P is closed, p and q-invariant, and has 0 as a limit
point. By Proposition 7.6, P � P = T.

Assume that for some k � 2, P
k�1 = Tk�1 and consider a point

y = (y1, y2, . . . , yk) 2 P
k

. The first k � 1 coordinates of y can be written
in the form given in (7.1), and by the inductive assumption we can take
y1, y2, . . . , yk�1 to be any points in the torus. In particular, choose these
k� 1 coordinates to be rationals m/r, where m, r 2 N. By Lemma 7.7, for
some t 2 N, we have that

pt ⌘ qt ⌘ 1 mod r.

This determines some choice (not necessarily a unique choice) of the points
x1, x2, . . . , xk

2 P , satisfying

y1 = x2 � x1, y2 = x3 � x2, . . . , yk�1 = x
k

� x
k�1.

However, x
k+1 is not yet determined and can still be chosen freely in P .

Since P is perfect, we can choose x
k+1 2 P to approximate x

k

arbitrarily
well. This means that we can choose a sequence of points in P approaching
x
k

. For each choice of x
k+1 in this sequence, the corresponding vector of

di↵erences y = (y1, y2, . . . , yk) still lies in P
k

. Each of these points has the
same first k � 1 coordinates. This means that the k-th coordinate of y
has 0 as a limit point. Furthermore, P

k

is pt and qt-invariant and so the
choices for the last coordinate are also pt and qt-invariant. It follows from
Proposition 7.8 that we can have any y

k

in the last coordinate of y.

We can carry out this procedure for any choice of k � 1 rationals
m1/r,m2/r, . . . ,mk�1/r in the first k�1 coordinates of the vector y. Since
r can be taken arbitrarily large, rationals of this form are dense in T. By
construction, the first k�1 coordinates of y are unchanged by multiplication
by pt and by qt for some t 2 N. Thus P

k

is closed and dense and so P
k

= Tk,
proving the claim.

In particular, for each k 2 N, the point (1/k, 1/k, . . . , 1/k) 2 P
k

. Tak-
ing a choice of x1, x2, . . . , xk+1 in (7.1) that gives rise to this point, the
points x1, x2, . . . , xk

are determined by x
j

= x
j�1 + 1/k for j = 2, . . . , k,
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with each x
j

2 P . Thus P has nontrivial intersection with any interval of
length 1/k in T. Since k is arbitrary, P is dense in T. ⇤

7.3. Generalizations

Based on Furstenberg’s Theorem, one can construct other dense subsets of
the circle:

Theorem 7.9. Let p, q > 1 be multiplicatively independent integers and let
⌧
m

be any sequence of real numbers. Then for any irrational ↵

{pnqm↵+ ⌧
m

: n,m 2 N}
is dense in T.

Before proving the theorem, we define a distance between subsets of
the circle:

Definition 7.10. If A,B ✓ T, then the Hausdor↵ distance d(A,B) be-
tween A and B is defined by

d(A,B) = inf{|a� b| : a 2 A, b 2 B}.
The Hausdro↵ metric on T is the metric induced by the Hausdor↵ distance
d.

Using this notion of distance between subsets of the circle and the
associated notion of a limit, Theorem 7.9 is a corollary of the following
lemma:

Lemma 7.11. Let p, q be multiplicatively independent, integers, " > 0, and
assume that A is an infinite p-invariant subset of T. There exists n 2 N
such that qnA has nontrivial intersection with any interval of size ✏ in T.

Proof. Without loss, we can assume that A is closed (by replacing A with
its closure). Let

X = {qnA : n 2 N}.
Since A is p-invariant, so is each X 2 X . Let B =

S
X2X X. Then B

is infinite, since it contains A; B is closed in T, since X is closed in the
Hausdor↵ topology; B is both p and q-invariant, since each X 2 X is. By
Theorem 7.5, B = T. In particular, there exists ↵ 2 B such that the closure
{pn↵ : n 2 N} = T. By definition, ↵ 2 X for some X = lim

j

qnjA, where
the limit is taken along some sequence n

j

! 1. Since X is p-invariant,

X ◆ {pn↵ : n 2 N}
and so X = T. Thus along the sequence n

j

, for su�ciently large n
j

, qnjA
has nontrivial intersection with every interval of size " in T. ⇤
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of Theorem ??. Fix " > 0 and let

A = {pn↵ : n 2 N}.
By Lemma 7.11, there exists m 2 N such that qmA has nontrivial intersec-
tion with every interval of size " in T. Since qmA+ ⌧

m

is a translate of this
set, it too has nontrivial intersection with every interval of size " in T. ⇤

Theorem 7.12. Let k 2 N. Let p
i

, q
i

2 N with 1 < p
i

< q
i

are pairs
of multiplicatively independent integers for i = 1, . . . , k and assume that
p1  p2  . . .  p

k

. Then for distinct ↵1, . . . ,↵k

2 T with at least one
↵
i

/2 Q,

� kX

i=1

pn
i

qm
i

↵
i

: n,m 2 N
 

is dense in T.

The proof of this theorem is left to a series of exercises.

There are simple to state (but not so simple to answer...) open ques-
tions related to the dynamics of nonlacunary subsets of integers. Assume
that p, q > 1 are multiplicatively independent integers. It follows from
Furtsenberg’s Theorem that if A is a closed, infinite, p-invariant subset of
the circle, then there exists a sequence n

j

! 1 such that qnjA ! T in the
Hausdor↵ metric. It is unknown if one needs to pass to a subsequence:

Question 7.13. Assume that p, q > 1 are multiplicatively independent
integers and that A ⇢ T is closed, infinite, and p-invariant. Let " > 0.
Does there exist N 2 N such that for all n > N , qnA is " dense?

One can also try and generalize the results for nonlacunary subgroups
for higher dimensions:

Question 7.14. If p, q > 1 are relatively prime integers and ↵,� are irra-
tionals that are independent over Q, then is

{(pnqm↵, pnqm�) : m,n 2 N}
dense in T⇥ T?

This question is phrased a bit di↵erently from Theorem 7.4, requiring
that p and q be relatively prime and not merely multiplicatively indepen-
dent. It is possible to construct examples of relatively independent integers
such that the corresponding conclusion of density does not hold.

Notes

Furstenberg’s original paper [24] includes a proof of Theorem 7.4 as a corol-
lary of the development of an important new notion in topolgical dynamics
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(and in ergodic theory) called disjointness. Since then, there have been
several elementary proofs, such as one by Michael Boshernitzan [6]. The
argument given here is a variant of an argument of Daniel Rudolph (un-
published). For the statements and proofs of the stronger equidistribution
results alluded to after the statement of Theorem 7.4, see [27].

Theorems 7.9 and 7.12 appear in Kra [41]. The examples alluded to
after Question 7.14 were constructed by Daniel Berend (unpublished). A
hint on how to construct such examples is given in Exercise 7.9.

Exercises

Exercise 7.1. Show that p, q > 1 are multiplicatively independent integers
if and only if log p/ log q /2 Q.

Exercise 7.2. Show that Theorem 7.4 implies Theorem 7.5.

Exercise 7.3. Let p 2 N with p > 1. Show that exists an irrational
↵ 2 [0, 1] such that {pn↵ mod 1: n 2 N} is not dense. Conclude that not
all irrational numbers can be approximated arbitrarily well by rationals
with denominator of the form pn for some n 2 N.

For Exercises 7.4–7.8, assume that p
i

, q
i

> 1 are pairs of multiplica-

tively independent integers and let M1 =

✓
p1 0
0 p2

◆
and M2 =

✓
q1 0
0 q2

◆
.

Exercise 7.4. Assume that A ⇢ T2 is nonempty, closed, and invariant
under multiplication by M1 and M2. Show that if all points of A \ Q2

are isolated in A, then A is finite. Hint: the possibilities for the fibers
A

x

= {t 2 T : (t, x) 2 A}.
Exercise 7.5. Assume that A is a closed subset of T2 that is invariant
under M1 and M2 and assume that (r, s) 2 A \ Q2. Show that there
exist n,m 2 N such that A � (r, s) is invariant under Mn

1 and Mm

2 . Hint:
compare this result with Lemma 7.7.

Exercise 7.6. Let S be the set of accumulation points of the set
�
(pn1 q

m

1 ↵1, p
n

2 q
m

2 ↵2) 2 T2 : n,m 2 N
 
.

Show that if (0, 0) 2 X, then one of the following holds:

(1) (0, 0) is isolated in S.

(2) S contains the whole x-axis or the whole y-axis.

(3) For some c > 0, S contains the curve y = cx⇢, for x > 0, where
⇢ = log p2/ log p1 = log q2/ log q1.

Conclude that either (0, 0) is isolated in S or that {x+ y : (x, y) 2 S} = T.
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Exercise 7.7.

Exercise 7.8. Combine the preceeding exercises to complete the proof of
Theorem 7.12.

Exercise 7.9. Construct multiplicatively independent integers p, q > 1
and irrationals ↵ and � that are independent over Q such that the orbit
closure

{(pnqm↵, pnqm�) : m,n 2 N}
consists of exactly two lines. Hint: consider p = 10 and q = 20. Construct
↵ and � as sums

P
i

1/10ni and
P

i

1/20mi , where the n
i

and m
i

are
sequences that grow quickly with n1 < m1 < n2 < m2 < . . ..



Chapter 8

Van der Waerden’s
Theorem

8.1. Translating van der Waerden’s Theorem to
dynamics

Our goal in this chapter is to prove Van der Waerden’s Theorem (Theo-
rem 1.4):

Theorem 8.1. If N = C1 [ C2 [ . . . [ C
r

is a finite partition, then some
C

j

, j 2 {1, 2, . . . , r}, contains arbitrarily long arithmetic progressions.

We start with some definitions designed to formalize the link between
recurrence and coloring theorems.

Definition 8.2. Define P ✓ Nk to be a van der Waerden collection if given
any finite partition N = C1 [ C2 [ . . . [ C

r

, there exist (s1, s2, . . . , sk) 2 P
and j 2 {1, 2, . . . , r} such that {s1, s2, . . . , sk} ⇢ C

j

.

More generally, this definition can be made in any semigroup, not
just in Nk. Since our interest lies in finding arithmetic progressions in the
integers, we focus on the group N.

In our terminology, van der Waerden’s Theorem becomes:

Theorem 8.3. In N, the arithmetic progressions of length k form a van
der Waerden collection.

The version of van der Waerden’s Theorem stated in Theorem 8.1
follows immediately: by the pigeonhole principle, some piece of any finite

79
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partition contains arithmetic progressions of length k for infinitely many k,
and therefore for arbitrary k.

Definition 8.4. Define P ✓ Nk to be a Birkho↵ collection if for any
dynamical system (X,T ), x 2 X and " > 0, there exists (s1, s2, . . . , sk) 2 P
such that T s1x, T s2x, . . . , T skx all lie within " of each other.

In this definition, we have implicitly assumed that (X,T ) is metrizable.
This notion can also be formulated in purely topological terms: if U is a
nonempty open set, there exists (s1, s2, . . . , sk) 2 P such that

T s1U \ T s2U \ . . . \ T skU 6= ?.

Although this is slightly more general, in order to clarify the ideas in the
proof we assume metrizability and leave general reformulations to the ex-
ercises.

In spite of the seemingly di↵erent formulations, the definitions of a
Birkho↵ collection and of a van der Waerden collection are equivalent.
This makes it possible to translate a combinatorial problem, such as van
der Waerden’s Theorem, into a dynamical question:

Theorem 8.5. The subset P ✓ Nk is a Birkho↵ collection if and only if
P is a van der Waerden collection.

Proof. Assume that P is a Birkho↵ collection and that N = C1 [ C2 [
. . . [ C

r

is a finite partition. Let X = {1, 2, . . . , r}N and let T : X ! X be
the shift map. Choose a metric d on X such that d(x, y) < 1 if and only if
x0 = y0. Define the point x 2 X by x

n

= i if n 2 C
i

. By assumption, there
exists (s1, s2, . . . , sk) 2 P such that T s1x, T s2x, . . . , T skx all lie within " of
each other. By choice of the metric, we have that

(T s1x)0 = (T s2x)0 = . . . = (T skx)0

and so x
s1 = x

s2 = . . . = x
sk . But this means that (s1, s2, . . . , sk) ⇢ C

j

for some j 2 {1, 2, . . . , r}.
Conversely, assume that P is a van der Waerden collection. Let (X,T )

be a dynamical system, x 2 X and " > 0. Since X is compact, given " > 0,
we can partition X into a finite number of pieces such that the diameter
of each piece is bounded by ". Thus we can write X = Y1 [ Y2 [ . . . [ Y

r

so that the diameter of each Y
j

, j = 1, 2, . . . , r is smaller than ". Define a
partition of N by setting n 2 C

j

if Tnx 2 Y
j

. Since P is a van der Waerden
collection, there exists (s1, s2, . . . , sk) 2 P with {s1, s2, . . . , sk} ⇢ C

j

for
some j 2 {1, 2, . . . , r}. Thus T s1x, T s2x, . . . , T skx all lie in the same Y

j

and so all lie within " of each other. ⇤
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8.2. Dynamical van der Waerden Theorem

Using the correspondence of Theorem 8.5, van der Waerden’s Theorem
follows from the following “dynamical” van der Waerden Theorem:

Theorem 8.6. Assume that (X,T ) is a dynamical system, k 2 N, x 2 X
and " > 0. There exist n,m 2 N with n � 1 such that

Tmx, Tn+mx, T 2n+mx, . . . , T kn+mx

all lie within " of each other.

The proof follows from a generalization of Birkho↵’s Recurrence The-
orem. Recall that Birkho↵’s Theorem states that any dynamical system
(X,T ) contains a recurrent point, meaning that there exists x 2 X such
that for all " > 0, there exists n 2 N with d(Tnx, x) < ". Our interest lies
in the existence of a multiply recurrent point:

Definition 8.7. If (X,T ) is a dynamical system, the point x 2 X is k-
multiply recurrent if for all " > 0, there exists n 2 N satisfying d(T jnx, x) <
" for j = 1, 2, . . . , k. If x 2 X is k-multiply recurrent for all k 2 N, then we
says that x is multiply recurrent.

The proof of Theorem 8.6 is carried out in several steps. First we
show (Lemma 8.9) that in a minimal system, so long as some point is mul-
tiply recurrent, then we have a dense set of points with strong recurrence
properties. We use this to show (Theorem 8.10) that any system contains
some point with these recurrence properties. Finally we use such points to
complete the proof of Theorem 8.6.

Notation 8.8. Let B(x; ") denote the ball around x of radius ", meaning
that

B(x; ") = {y 2 X : d(y, x) < "}.
Lemma 8.9. Let (X,T ) be a minimal dynamical system and let k 2 N.
Assume that for each " > 0, there exist x 2 X and n 2 N such that
d(T jnx, x) < " for j = 1, 2, . . . , k. Then there is a dense set Y ✓ X
such that for each y 2 Y , there exists n 2 N with d(T jny, y) < " for
j = 1, 2, . . . , k.

Proof. Let U ✓ X be a nonempty open set and let B0 ⇢ U be a ball of
radius ". By Proposition 4.9, there exists J 2 N such that

X =
J[

j=1

T�jB0.

By Lemma F.14, there exists � > 0 (the Lebesgue number of the covering)
such that any set of diameter bounded by � is contained in some T�jB0

where 1  j  J .
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By hypothesis, there exist x 2 X and n 2 N such that d(T jnx, x) < �
for j = 1, 2, . . . , k. Thus

Tnx, T 2nx, . . . , T knx 2 B(x; �).

The choice of � implies that B(x; �) ⇢ T�j(B0) for some j 2 {1, . . . , J}.
Then T j(B(x; �)) ⇢ B0 and so setting y = T jx, we have

y, Tny, T 2ny, . . . , T kny 2 B(y; ").

Thus we have produced y 2 U and n 2 N such that d(T jny, y) < " for
j = 1, 2, . . . , k. Since U is an arbitrary nonempty open set, the set of
points satisfying this property is dense. ⇤

We use this to show that any dynamical system contains a multiply
recurrent point:

Theorem 8.10. If (X,T ) is a dynamical system, k 2 N, and " > 0, then
there exist x 2 X and n 2 N such that d(T jnx, x) < " for j = 1, 2, . . . , k.

Proof. Since any dynamical system contains a minimal set, by replacing
X by this minimal system, we can assume that X is minimal.

We proceed by induction on k. For k = 1, the existence of a recurrent
point follows from Birkho↵’s Recurrence Theorem. (In fact this holds for

all points. Minimality implies that O+
T

(x) = X for any x 2 X and so in
particular, for any " > 0 there exists n 2 N such that d(Tnx, x) < ". Thus
every point is 1-recurrent.)

Assume that the statement holds for some k � 1, meaning that for
any " > 0, there exist x 2 X and n 2 N such that d(T jnx, x) < " for j =
1, 2, . . . , k. By Lemma 8.9, for each " > 0, there is a dense set Y ✓ X such
that for all y 2 Y , there exists n 2 N with d(T jny, y) < " for j = 1, 2, . . . , k.
We show that the same conclusion holds for k + 1.

Fixing " > 0, we can choose x0 2 X and an integer n0 2 N such that
d(T jn0x0, x0) < "/2 for j = 0, 1, 2, . . . , k. A minimal transformation is
surjective and so we can choose x1 2 X such that Tn0x1 = x0. Then for
j = 1, 2, . . . , k,

d(T (j+1)n0x1, x0) = d(T jn0Tn0x1, x0) = d(T jn0x0, x0) < "/2.

This means that for j = 1, 2, . . . , k + 1,

d(T jn0x1, x0) < "/2.

Since T is continuous, the same conclusion holds in some neighborhood
of x1, Thus we can choose "1 with 0 < "1 < " such that d(T jn0y, x0) <
"/2 for j = 1, 2, . . . , k + 1 and for all y 2 B(x1; "1). By the inductive
assumption, there exist a point y1 2 B(x1; "1/2) and n1 2 N such that
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d(T jn1y1, y1) < "1/2 for j = 1, 2, . . . , k. This means that y1 and T jn1y1,
for j = 1, 2, . . . , k, lie in B(x1, "1). Thus for j = 1, 2, . . . , k + 1,

d
�
T jn0(T (j�1)n1y1), x0

�
< "/2.

Taking any point x2 2 X such that Tn1x2 = y1, we have

d(T jn1x2, x1) < "1/2 < "/2

for j = 1, 2, . . . , k + 1, as well as:

d(T j(n1+n0)x2, x0) < "/2.

Inductively, we find x0, x1, x2, . . . 2 X and n1, n2, n3, . . . 2 N such that
for any i 2 N and for j = 1, 2, . . . , k + 1,

d(T jni�1x
i

, x
i�1) < "/2,

d(T j(ni�1+ni�2)x
i

, x
i�2) < "/2,

and
d(T j(ni�1+...+n0)x

i

, x0) < "/2.

By compactness of X, there exist integers 0 < m < l such that d(x
l

, x
m

) <
"/2. Thus

d(T j(nl�1+...+nm)x
l

, x
l

)  d(x
l

, x
m

) + d(x
m

, T j(nl�1+...+nm)x
l

) < "

for j = 1, 2, . . . , k + 1. Taking x = x
l

and n = n
l�1 + . . . + n

m

, we have
produced a point x 2 X such that d(T jnx, x) < " for j = 1, 2, . . . , k+1. ⇤

Several corollaries are immediate:

Corollary 8.11. If (X,T ) is a minimal dynamical system, k 2 N, and
" > 0, then there exists a dense set X0 ✓ X such that for each x 2 X0,
there exists n 2 N with d(T jnx, x) < " for j = 1, 2, . . . , k.

Proof. By Theorem 8.10, some point satisfies the conclusion and so by
Lemma 8.9, we have a dense set points satisfying the conclusion. ⇤

One can strengthen this to show that in any minimal system, one can
find a dense set of points with this recurrence property, meaning a dense
set of k-multiply recurrent points (Exercise 8.9).

Corollary 8.12. Assume that (X,T ) is a dynamical system, k 2 N, and
" > 0. If X0 ✓ X is dense, then for some x 2 X0 and n 2 N, d(T jnx, x) < "
for j = 1, 2, . . . , k.

Proof. By Theorem 8.10, there exist x 2 X and n 2 N with d(T jnx, x) < "
for j = 1, 2, . . . , k. By continuity of T , any point in a su�ciently small
neighborhood of X satisfies the same conclusion. ⇤

Lastly, we use Theorem 8.10 to complete the proof of Theorem 8.6:
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Proof. (of Theorem 8.6) Fix k 2 N, x 2 X, and " > 0 and let Y = O+
T

(x).
By Theorem 8.10, there exist y 2 Y and n 2 N such that

y, Tny, T 2ny, . . . , T kny

all lie within " of each other. Since y lies in the orbit closure of x, choosingm
such that Tmx stays close to y for kn iterates, we have the same conclusion
for Tmx. Thus

Tmx, Tn+mx, T 2n+mx, . . . , T kn+mx

all lie within " of each other. ⇤

There are numerous generalizations of this result. In Chapter 9, we
give an alternate proof of Theorem 8.6 as a corollary of a stronger multiple
recurrence theorem, proving the recurrence theorem for a commuting set
of transformations, and we also show that one can also place restrictions
on the return times.

Notes

Solving a conjecture of Schur, van der Waerden proved Theorem 8.1 in [61]
via combinatorial methods. The translation to the dynamical formulation
of Theorem 8.6 and its proof was given by Furstenberg and Weiss in [30].

Exercises

Exercise 8.1. State the finite version of van der Waerden’s Theorem (see
Chapter 1.2 for the meaning). Show that it is equivalent to van der Waer-
den’s Theorem.

Exercise 8.2. Show that the conclusion of van der Waerden’s Theorem
does not hold for infinite length progressions, meaning show that there
exists a finite partition of N such that no piece contains an infinite length
arithmetic progression.

Exercise 8.3. Show that van der Waerden’s Theorem is equivalent to the
following statement: if N = C1 [ C2 [ . . . [ C

r

and F ⇢ N is finite, then
there exists some a 2 N, n 2 N and j 2 {1, 2, . . . , r} so that C

j

contains
{a+ nx : x 2 F}. (Such a set is called an a�ne image of the set F .)

Exercise 8.4. Show that a syndetic set in N contains arbitrarily long
arithmetic progressions.

Exercise 8.5. Show that a piecewise syndetic set in N contains arbitrarily
long arithmetic progressions.
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Exercise 8.6. Show that if a set A ✓ N contains arbitrarily long arithmetic
progressions and A = A1 [ . . . [ A

r

is a finite partition, then some A
j

,
1  j  r also contains arbitrarily long arithmetic progressions.

Exercise 8.7. Use van der Waerden’s Theorem to show that for all ↵ 2 R
and all " > 0, there exist m,n 2 N such that |n2↵ � m| < ". Generalize
this for any polynomial p(n) with integer coe�cients such that p(0) = 0.

Exercise 8.8. Show that Theorem 8.6 is equivalent to the following: if
(X,T ) is a dynamical system, k 2 N and U ✓ X is a nonempty open set,
then there exists n 2 N such that U \ TnU \ T 2nU \ . . . \ T knU 6= ?.

Exercise 8.9. Show that for any k 2 N, there is a dense set of k-multiply
recurrent points in any minimal dynamical system.

Exercise 8.10. Construct a dynamical system (X,T ) and x 2 X such that
x is recurrent under T , x is recurrent under T 2, but (x, x) is not recurrent
under T ⇥ T 2. (Hint: use a shift space.)

Exercise 8.11. Show that not all points in an arbitrary system satisfy the
conclusion of Theorem 8.10. Show that not all points in a minimal system
satisfy the conclusion of Theorem 8.10. (The first part is easy, but the
second is not.)

Exercise 8.12. Show that if (X,T ) is a dynamical system, k 2 N, " > 0,
and a1, a2, . . . , ak

2 N, then there exists x 2 X and n 2 N such that
d(T ajnx, x) < " for j = 1, 2, . . . , k. Show that in a minimal system, this
holds (with the same n) for a dense set of x.


