FINAL: MATH 109, FALL 2011.

No books, notes, calculators, cell phones, laptops, tablets, ... are permitted. Good luck !
(1) (10 points) Let $a, b, c \in \mathbb{Z}$. Prove that if $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$.
(2) (a) (3 points) Let $k, l \in \mathbb{N}$. Prove that $2^{k}-1 \mid 2^{l}-1$ if $k \mid l$.
(b) (12 points) Prove that $\operatorname{gcd}\left(2^{n}-1,2^{m}-1\right)=2^{\operatorname{gcd}(n, m)}-1$ for any $m, n \in \mathbb{N}$.
(3) (15 points) For any set X, prove that $|X|<|P(X)|$ where $P(X)$ is the power set of X.
(4) (10 points) Find all the solutions of $106 x=6$ in $\mathbb{Z} / 58 \mathbb{Z}$.
(5) (10 points) Let $X=\{1,2,3,4\}$. How many relations R are there on X which satisfy all these conditions: R is reflexive. R is symmetric, and $1 R 3$? Explain your solution.
(6) (10 points) Let $X=\{1,2, \ldots, 2011\}$. Compute $\mid\{A \subseteq X| | A \mid$ is even $\} \mid$. Explain your solution.
(7) (15 points) Let $f: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}, f\left([x]_{m}\right)=[12 x]_{n}$. Prove that f is well-defined if and only if $n / \operatorname{gcd}(12, n)$ divides m. What is the necessary and sufficient condition under which f is a bijection?
(8) (10 points) Find the remainder of the division of 3^{2011} by 2012.

