PRACTICE MIDTERM I, MATH 103B, WINTER 2012.

ALIREZA SALEHI GOLSEFIDY

1. Either provide an example to support your answer or prove your claim: (5 points each)
(1) What is a unit in a unital ring?
(2) Give a ring R and a non-principal ideal I.
(3) Is there a non-commutative ring of order 4?
(4) Let R be a ring and assume that it has a subring isomorphic to \mathbb{Q}. Does R have a unity?
2. Let $S=\left\{\left.\left[\begin{array}{cc}a & b \\ 2 b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}\right\} \subseteq \mathrm{M}_{2}(\mathbb{Q})$.
(1) (10 points) Prove that S is a commutative unital subring of $\mathrm{M}_{2}(\mathbb{Q})$.
(2) (5 points) Prove that S is a field.
(3) (10 points) Prove that $f: S \rightarrow \mathbb{Q}[\sqrt{2}]$ given by

$$
f\left(\left[\begin{array}{cc}
a & b \\
2 b & a
\end{array}\right]\right)=a+\sqrt{2} b
$$

is an isomorphism.
(4) (5 points) Is $R=\left\{\left.\left[\begin{array}{cc}a & b \\ 2 b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$ a field? Explain your answer.
(5) (Bonus) Prove that R is isomorphic to $\mathbb{R} \oplus \mathbb{R}$.

Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: golsefidy@ucsd.edu

Date: 1/27/2012.

