Mathematics 103B Practice problems
Exam 2

1. Let \(f(x) = x^4 + 4x + 5 \) and \(g(x) = x^2 + 2x + 2 \) be polynomials in \(\mathbb{Z}/7\mathbb{Z}[x] \). Find the quotient and remainder for dividing \(f(x) \) by \(g(x) \).

 \[f(x) = (x^2 - 2x + 2)(x^2 + 2x + 2) + 4x + 1. \]

 Thus the quotient is \(x^2 - 2x + 2 \) and the remainder is \(4x + 1 \).

2. Give an explicit example of an infinite field of characteristic 7. Is there an example of an infinite field of characteristic 6?

 One such example is \(\mathbb{Z}/7\mathbb{Z}(x) \), the field of fraction of \(\mathbb{Z}/7\mathbb{Z}[x] \).

 There is no infinite field of characteristic 6, because the characteristic of any integral domain is 0 or prime.

3. Let \(\mathbb{Z}[x, y] = \mathbb{Z}[x][y] \) be the polynomials in the two variables \(x, y \) with integer coefficients. Is there a field that contains \(\mathbb{Z}[x, y] \)? How about \(\mathbb{Z}/6\mathbb{Z}[x, y] \); is there a field that contains this ring?

 The ring \(\mathbb{Z}/6[x, y] \) cannot be contained in a field because it is not an integral domain.

4. Let \(F \) be a field of characteristic \(p \). We proved in class that \(F \) contains the finite field \(\mathbb{Z}/p\mathbb{Z} \) as a subring. Suppose \(a \in F \) satisfies \(a^p = a \). Prove that \(a \) is in the subfield \(\mathbb{Z}/p\mathbb{Z} \).

 Consider the polynomial \(f(x) = x^p - x \in F[x] \). The elements of \(\mathbb{Z}/p\mathbb{Z} \) are zeros of this polynomial, by Fermat’s little theorem. Thus \(f(x) \) has \(p \) distinct zeros, all in \(\mathbb{Z}/p\mathbb{Z} \). Because \(f \) has degree \(p \), those are all of its zeros in the field \(F \). Because \(a^p = a \) in \(F \), \(f(a) = 0 \), so \(a \in \mathbb{Z}/p\mathbb{Z} \).

5. Set \(R = \mathbb{Z}/10\mathbb{Z} \). Give an example of an ideal of \(R \) that is prime. Be sure to prove that your ideal is prime. Is your ideal also maximal?

 Consider the principal ideal \(\langle 2 \rangle \) in \(\mathbb{Z}/10\mathbb{Z} \). By the third isomorphism theorem, \(\mathbb{Z}/10\mathbb{Z}/\langle 2 \rangle = \mathbb{Z}/2\mathbb{Z} \), because \(2|10 \). This is an integral domain (in fact, a field), so \(\langle 2 \rangle \) is prime.

 We also could have chosen \(\langle 5 \rangle \) as a prime ideal. Recall that prime ideals are by definition proper ideals, so \(\langle 5 \rangle \) and \(\langle 2 \rangle \) are the only options.

6. Are there any examples of ideals of the ring \(R = \mathbb{Z}[i] \) that are prime but not maximal?

 The zero ideal \(\{ 0 \} \) is an example. (In fact, this is the only such example; it is a very good exercise to try to prove that all other prime ideals are maximal!)
7. Suppose R is a commutative ring with unity, and $I \subseteq R$ is a prime ideal so that R/I has finite size. Prove that I is maximal. Give an example of a commutative ring R with unity and an ideal I so that

- R has infinite size and
- R/I has finite size but I is not maximal.

Proof. The quotient R/I is a finite integral domain. As such, it is necessarily a field (we proved this!) and therefore I is maximal.

For an example for the second part, we could take $R = \mathbb{Z}$ and $I = (10)$.

8. Let $R = \mathbb{Z}[i]$. Find a prime number p so that $R/\langle p \rangle$ is not an integral domain. Be sure to prove your answer.

Proof. By the third isomorphism theorem, $R/\langle p \rangle \cong \mathbb{Z}/p\mathbb{Z}[x]/(x^2 + 1)$. This will fail to be an integral domain as soon as $x^2 + 1$ is reducible over $\mathbb{Z}/p\mathbb{Z}$. One could choose $p = 2$ (then $x^2 + 1 = (x + 1)^2$), $p = 5$ (then $x^2 + 1 = (x + 2)(x - 2)$), $p = 13$ (then $x^2 + 1 = (x + 5)(x - 5)$) or in fact any prime that is equivalent to 1 modulo 4.

9. For each of the following polynomials, factor it into a product of irreducibles. If the polynomial itself is irreducible, then say so. (Be sure to prove your answers.)

(a) $x^2 + 5x + 3 \in \mathbb{Z}/2\mathbb{Z}[x]$.
(b) $x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$. **Hint:** Observe that -1 is a root of this polynomial.
(c) $x^4 + 27x^2 + 6 \in \mathbb{Q}[x]$.
(d) $x^3 - x + 1 \in \mathbb{Z}/7\mathbb{Z}[x]$.
(e) $x^3 + 2x + 1 \in \mathbb{Q}[x]$. **Hint:** Consider the same polynomial in $\mathbb{Z}/3\mathbb{Z}[x]$.

Proof. We have:

(a) The polynomial $x^2 + 5x + 3$ is irreducible over $\mathbb{Z}/2\mathbb{Z}$, because neither 0 nor 1 are roots.
(b) Because -1 is a root, $x + 1$ must be a factor. Using long division gives $x^3 + x^2 + x + 1 = (x + 1)(x^2 + 1)$. The polynomial $x^2 + 1$ is irreducible over \mathbb{Q} as it has no roots in \mathbb{Q} and is quadratic.
(c) The polynomial $x^4 + 27x^2 + 6$ is irreducible over \mathbb{Q} by Eisenstein’s criterion using the prime $p = 3$.
(d) By plugging in different values for x, one finds $x = 2$ is a root. Now one does division to factor out an $x - 2$ and obtain $x^3 - x + 1 = (x - 2)(x^2 + 2x + 3)$. By trying the various values modulo 7, one finds $x^2 + 2x + 3$ has no root in $\mathbb{Z}/7\mathbb{Z}$ and thus is irreducible over $\mathbb{Z}/7\mathbb{Z}$.
(e) The polynomial $x^3 + 2x + 1$ is irreducible over $\mathbb{Z}/3\mathbb{Z}$, as one finds by checking that it has no root. Therefore $x^3 + 2x + 1$ is irreducible over \mathbb{Q}.
10. Construct explicitly a field of size 49.

Proof. The polynomial $x^2 + 1$ has no root over $\mathbb{Z}/7\mathbb{Z}$, thus is irreducible over this field. Consequently $\mathbb{Z}/7\mathbb{Z}[x]/\langle x^2 + 1 \rangle$ is a field of size $7^2 = 49$. □

11. Is $\mathbb{Z}[\sqrt{5}]/\langle 1 + \sqrt{5} \rangle$ a field? How many elements are in this quotient?

Proof. By the third isomorphism theorem, $\mathbb{Z}[\sqrt{5}]/\langle 1 + \sqrt{5} \rangle \simeq \mathbb{Z}[x]/\langle x^2 - 5, 1 + x \rangle$. Now $x^2 - 5 = (x + 1)(x - 1) - 4$, so $\mathbb{Z}[\sqrt{5}]/\langle 1 + \sqrt{5} \rangle \simeq \mathbb{Z}[x]/\langle x + 1, 4 \rangle$.

Now $\mathbb{Z}[x]/\langle x + 1 \rangle \simeq \mathbb{Z}$ by the map $f(x) \mapsto f(-1)$, so $\mathbb{Z}[x]/\langle x + 1, 4 \rangle \simeq \mathbb{Z}/4\mathbb{Z}$. This is not a field, and has four elements. □

12. Let R be the ring $R = \mathbb{Z}[x]/\langle x^3 + 4x + 1 \rangle$ and let α denote the image of x in R. What is the size of the ring $R/\langle \alpha - 1 \rangle$?

Proof. By the third isomorphism theorem, we have $R/\langle \alpha - 1 \rangle \simeq \mathbb{Z}[x]/\langle x - 1, x^3 + 4x + 1 \rangle$.

Now, $x^3 + 4x + 1 = q(x)(x - 1) + 6$, where I quickly found the remainder by plugging in 1 for x in $x^3 + 4x + 1$. Thus $\langle x - 1, x^3 + 4x + 1 \rangle = \langle 6, x - 1 \rangle$, and similar to the previous problem $R/\langle \alpha - 1 \rangle \simeq \mathbb{Z}/6\mathbb{Z}$. Thus this quotient has 6 elements. □

13. Give an example of a ring R that

- Contains the complex numbers \mathbb{C} as a subring;
- As a \mathbb{C} vector space, is of dimension four.

Proof. As a class of examples, we could take $\mathbb{C}[x]/\left\langle f(x) \right\rangle$ where $f(x) \in \mathbb{C}[x]$ is any polynomial of degree four. So, to be concrete, $\mathbb{C}[x]/\langle x^4 \rangle$ would work. □

14. Prove that the rings $\mathbb{Z}[x]/\langle x^2 \rangle$ and $\mathbb{Z} \times \mathbb{Z}$ are not isomorphic.

Proof. Note that in the second ring $\mathbb{Z} \times \mathbb{Z}$, if $\alpha^2 = 0$ then $\alpha = 0$. However, in the first ring, there is the nonzero element $x + \langle x^2 \rangle$ which satisfies $(x + \langle x^2 \rangle)^2 = 0$. □

15. Consider the ring homomorphism $\phi : \mathbb{Q}[x] \to \mathbb{Q}\sqrt{2}$ defined by $\phi(x) = 1 + \sqrt{2}$. Find a polynomial $p(x)$ so that $\ker(\phi) = \langle p(x) \rangle$.

Proof. Because $\phi(x) = 1 + \sqrt{2}$, $\phi(x - 1) = \sqrt{2}$, and thus $\phi((x - 1)^2 - 2) = 0$. We claim that $p(x) = (x - 1)^2 - 2 = x^2 - 2x - 1$ works. Note that we have shown that $\ker(\phi) \supseteq \langle p(x) \rangle$. To see the reverse inclusion, first note that ϕ is injective when restricted to polynomials of the form $a + bx$, as $\phi(a + bx) = a + b + b\sqrt{2}$. Now, suppose $g(x) \in \ker(\phi)$. Then we can write $g(x) = q(x)p(x) + a + bx$ for some $a, b \in \mathbb{Q}$. Consequently, $\phi(g(x)) = \phi(a + bx) = 0$ if and only if $a = b = 0$, proving that $g(x) \in \langle p(x) \rangle$. □