Last time: We studied Diophantine eqns, e.g., \(x^2 + y^3 = z^2 \).

Another technique: Proving diophantine eqns has only many solns w/o determining all solns.

Proof: The eqn \(x^2 + y^2 + z^2 = w^2 \) has only many pos int solns.

Proof: Consider the special case \(w = x+y \).

\[
\Rightarrow \quad x^2 + y^2 + z^2 = (x+y)^2 = x^2 + 2xy + y^2.
\]

\[
\Rightarrow \quad z^2 = 2xy.
\]

Let \(x = 2a^2, \ y = b^2 \), \(a, b \in \mathbb{Z} \).

Then \(2xy = 4a^2b^2 = (2ab)^2 \).

Let \(z = 2ab \).

Summary: \(\begin{cases} x = 2a^2, \ y = b^2, \ z = 2ab, \ w = x+y = 2a^2 + b^2 \\ \text{w/} \ a, b \in \mathbb{Z} \end{cases} \) then \(w^2 = x^2 + y^2 + z^2 \).

Double check: \(x^2 + y^2 + z^2 = (2a^2)^2 + (b^2)^2 + (2ab)^2 \)

\[
= 4a^4 + 4a^2b^2 + b^4
\]

\[\left(\sqrt{n}, \ n \right)^2 \]
\[
= 4a^4 + b^2
\]
\[
= (2a^2 + b^2)^2
\]
\[
= w^2 \quad \text{.}
\]

More on Pythagorean Triples

If \(A^2 + B^2 = C^2 \) then \(\left(\frac{A}{C} \right)^2 + \left(\frac{B}{C} \right)^2 = 1 \)

\(w/ \frac{A}{C}, \frac{B}{C} \) are \#s if \(A, B, C \) are nonzero integers

Conversely, if \(a^2 + b^2 = 1 \) \(w/ \ a, b \) rational \#s, then

\[a = \frac{A}{C}, \quad b = \frac{B}{C} \quad \text{for some } A, B, C \in \mathbb{Z} \]

\(\Rightarrow \) \(A^2 + B^2 = C^2 \).

\[\text{Upshot: Finding rational solns to the eqn } x^2 + y^2 = 1 \text{ is closely related to finding integer solns to } A^2 + B^2 = C^2. \]

Thm: All rational solns to \(x^2 + y^2 = 1 \) are given by

\[(x, y) = \begin{cases} (-1, 0) \quad \text{or} \\ x = 1 - t^2 \quad , \quad y = \frac{2t}{1 + t^2} \quad w/ \ t \text{ a rational } \# \\ \end{cases} \]

Pf: First observe these are solns:
It's observed these are solutions:

\[(-1)^2 + 0^2 = 1 \]

\[\left(\frac{1-t^2}{1+t^2} \right)^2 + \left(\frac{2t}{1+t^2} \right)^2 = \frac{1 - 2t^2 + t^4 + 4t^2}{(1+t^2)^2} = \frac{t^4 + 2t^2 + 1}{(t^2 + 1)^2} = \frac{(t^2 + 1)^2}{(t^2 + 1)^2} = 1. \]

Moreover, if \(t \) is rational then \(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2} \) are rational.

Looking for: Rational points on the unit circle.

Conversely, suppose \((x,y)\) is a rational solution of \(x^2 + y^2 = 1. \)

The slope of the line from \((x,y)\) to \((-1,0)\) is rational, call it \(t. \)

\[\frac{y}{x+1} = t. \]

\[x^2 + y^2 = 1 \]

\[y = t(x+1) \] for some rational \(t. \)

\[\downarrow \]

\[y^2 = t^2(x^2 + 2x + 1) \]

\[1 = x^2 + t^2(x^2 + 2x + 1) = (1 + t^2)x^2 + 2t^2x + t^2 \]

\[\Rightarrow (1 + t^2)x^2 + 2t^2x + t^2 - 1 = 0. \]

\[\Rightarrow \left[\frac{x^2 + 2t^2}{1 + t^2} x + \frac{t^2 - 1}{1 + t^2} \right] = 0. \]
KEY STEP: We knew \(x = -1 \) is a solution to this equation.

Thus, can factor out an \(x + 1 \) to obtain

\[
(x + 1) \left(x + \frac{t^2 - 1}{t^2 + 1} \right) = 0.
\]

Double check: \(x^2 + \left(1 + \frac{t^2 - 1}{t^2 + 1} \right) x + \frac{t^2 - 1}{t^2 + 1} = \frac{2t}{t^2 + 1} \)

\[
x = \frac{1 - t^2}{1 + t^2}, \quad y = t(x + 1) = t \left(1 + \frac{1 - t^2}{1 + t^2} \right) = \frac{2t}{1 + t^2}.
\]

Ex: Show that the eqn \(x^2 + y^4 = z^2 \) has only many positive integer solutions.

Idea: \(x^2 + (y^2)^2 = z^2 \)

So: we’re looking for Pythagorean triples with one term a 0.

\[
x = m^2 - n^2
\]

Let \(y^2 = 2mn \) \(\text{w/ } m, n \in \mathbb{Z} \).

\[
z = m^2 + n^2
\]

Then \(x^2 + y^4 = z^2 \).
We found all Pythagorean triples in terms of int. m,n:

If $A^2 + B^2 = C^2$ and $\gcd(A,B,C) = 1$

then $A = 2mn$
$B = \sqrt{m^2 - n^2}$
$C = \sqrt{m^2 + n^2}$

(up to switching A and B)

Now, choose m,n s.t. $2mn$ is a square.

$m = 2u^2$, $n = v^2$ then $2mn = 4u^2v^2 = (2uv)^2$.

$x = m^2 - n^2 = 4u^4 - v^4$

$y = 2mn = 4u^2v^2 \Rightarrow y = 2uv$, these will be solns.

$z = m^2 + n^2 = 4u^4 + v^4$

Double check:

$x^2 + y^4 = (4u^4 - v^4)^2 + (4u^2v^2)^2$

$= 16u^8 - 8u^4v^4 + v^8 + 16u^4v^4$

$= 16u^8 + 8u^4v^4 + v^8$

$= (4u^4 + v^4)^2 = z^2$