Last time

Minimal polynomials

Thm If \(a \) is algebraic over a field \(F \), then there is a unique monic irreducible polynomial \(p(x) \in F[x] \) such that \(p(a) = 0 \).

In fact, if \(f(x) \in F[x] \) is such that \(f(a) = 0 \), then \(p(x) \) divides \(f(x) \) in \(F[x] \).

Def: The polynomial \(p(x) \) is called the minimal polynomial for \(a \) over \(F \).

Ex
- The minimal polynomial for \(\sqrt{2} \) over \(\mathbb{Q} \) is \(x^2 - 2 \)
- The minimal polynomial for \(\sqrt{2} \) over \(\mathbb{R} \) is \(x - \sqrt{2} \)
- The min. poly. for \(i \) over \(\mathbb{R} \) is \(x^2 + 1 \)
- The min. poly. for \(i \) over \(\mathbb{C} \) is \(x - i \)

Def: Let \(E \) be an extension field of \(F \). If \(E \) has
Let \(E \) be an extension field of \(F \). If \(E \) has dimension \(n \) as an \(F \)-vector space, we write \([E:F]=n\) and say \(E \) has degree \(n \) over \(F \).

Example

If \(F \) is a field, \(p(x) \in F[x] \) is irreducible of degree \(n \), and \(a \) is a zero of \(p \) in some extension field of \(F \), then \([F(a):F]=n\).

Example

- \(\mathbb{Q}(i) \) has dimension 2 as a \(\mathbb{Q} \)-vector space
- \(\mathbb{R} \) has dimension 1 as a \(\mathbb{Q}(i) \)-vector space

Going: \(K \supseteq E \supseteq F \)

\([K:E]=m \implies [K:F]=mn\)

\([E:F]=n\)

Theorem: If \(E \) is a finite extension of \(F \), then \(E \) is an algebraic extension of \(F \).

Proof: Suppose \([E:F]=n\) and \(a \in E \). Then \([1, a, a^2, \ldots, a^n]\) is linearly dependent over \(F \).
\[\{ 1, u, u^2, \ldots, u^n \} \text{ is linearly dependent over } \mathbb{F}. \]

\[\Rightarrow \exists c_0, c_1, \ldots, c_n \in \mathbb{F} \text{ such that } c_0 + c_1 a + c_2 a^2 + \ldots + c_n a^n = 0. \]

\[\Rightarrow a \text{ is a zero of } f(x) = c_n x^n + \ldots + c_0 \in \mathbb{F}[x]. \]

\[\Rightarrow \text{Aside: } \mathbb{Q}(\alpha) = \{ a + b \alpha : a, b \in \mathbb{Q} \} \]

\[\Rightarrow \{ 1, \alpha \} \text{ is a basis for } \mathbb{Q}(\alpha) \text{ over } \mathbb{Q}. \]

\[\Rightarrow [\mathbb{Q}(\alpha) : \mathbb{Q}] = 2. \]

\[\cdot \mathbb{Q}(\alpha) = \mathbb{Q}[x] / \langle x^2 + 1 \rangle \]

We proved, in general, that

\[\frac{\mathbb{F}[x]}{\langle f(x) \rangle} \text{ is a } \mathbb{F} \text{ vector space of dimension } \deg(f) = n. \]

We checked

\[1 + \langle f(x) \rangle, x + \langle f(x) \rangle, \ldots, x^{n-1} + \langle f(x) \rangle \]

is a basis of \(\frac{\mathbb{F}[x]}{\langle f(x) \rangle} \).

\[\cdot \text{If } \mathbb{F} \text{ is a field, it is always true that } \mathbb{F} \text{ has dimension 1 as an } \mathbb{F} \text{ vector space.} \]

For example \(\{ a \alpha \} \) is a basis, if \(a \in \mathbb{F}, a \neq 0. \)
Thm: Let K be a finite extension of the field E, and let E be a finite extension of the field F. Then K is a finite extension of F and

$$[K:F] = [K:E][E:F].$$

Let $\{x_1, \ldots, x_n\}$ be a basis for K over E and $\{y_1, \ldots, y_m\}$ be a basis for E over F.

Suffices to prove: $\{y_j x_i : 1 \leq j \leq m, 1 \leq i \leq n\}$ is a basis for K over F.

Spanning: Suppose $a \in K$. Then $\exists b_1, \ldots, b_n \in E$ such that

$$a = b_1 x_1 + \ldots + b_n x_n.$$

For each b_i, $\exists c_{i1}, c_{i2}, \ldots, c_{im} \in F$ such that

$$b_i = c_{i1} y_1 + c_{i2} y_2 + \ldots + c_{im} y_m$$

$$a = \sum_{i=1}^{n} b_i x_i = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} c_{ij} y_j \right) x_i = \sum_{1 \leq j \leq m} \left[\sum_{1 \leq i \leq n} c_{ij} y_j x_i \right].$$

$\{y_j x_i : 1 \leq j \leq m, 1 \leq i \leq n\}$ is a basis for K over F.

$K = \frac{\text{basis for } K/F}{n}$.
\[K \supseteq \{ x_1, \ldots, x_n \} \text{ basis for } K/E \]
\[E \supseteq \{ y_1, \ldots, y_m \} \text{ basis for } E/F \]
\[F = \sum_{i,j} c_{ij} \]

Independence

Suppose \(\exists c_{ij} \in F \) such that \(\sum_{i,j} c_{ij} y_j x_i = 0 \).

Then \(\sum_{i=1}^n \left(\sum_{j=1}^m c_{ij} y_j \right) x_i = 0 \).

By the fact that the \(x_i \)'s are linearly independent over \(E \),
\[\sum_{j=1}^m c_{ij} y_j = 0 \text{ for each } i. \]

By the fact that the \(y_j \) are linearly independent over \(F \),
\[c_{ij} = 0 \text{ } \forall i,j. \]

Notation: Write \(E \mid m F \) if \(E \) is an extension field of \(F \) of degree \(m \).
So just proved:
\[
\begin{align*}
K & \\
\subseteq & \\
\cap & \\
\cong & \\
\text{mn} & \\
E & \\
\subseteq & \\
\text{im} & \\
F & \\
\end{align*}
\]

\textbf{Proof:} Suppose \(F \) is a field, \(K \) some extension field of \(F \), and \(a \in K \) algebraic over \(F \). If \(E \subseteq K \) is another extension field of \(F \), then

\[
\frac{[E(a) : E]}{[E(a) : E]} \leq \frac{[F(a) : F]}{[F(a) : F]}
\]

\textbf{Pf:} Because \(a \) is algebraic over \(F \), it is clearly also algebraic over \(E \). We know

\[
F(a) = F[x] / \langle p(x) \rangle \quad \text{where } p \text{ is the minimal polynomial of } a \text{ over } F.
\]

\[
E(a) = E[x] / \langle q(x) \rangle \quad \text{where } q \text{ is the minimal polynomial of } a \text{ over } E.
\]
where \(q \) is the minimal polynomial of \(a \) over \(E \).

Because \(p(a) = 0 \), \(p(x) \in E[x] \subseteq F[x] \), we get that \(q(x) \) divides \(p(x) \) in \(E[x] \). Thus \(\deg(q) \leq \deg(p) \).

So

\[
[E(a) : E] = \deg(q) \leq \deg(p) = [F(a) : F].
\]

Example

```
\[\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{3}) = K\]
```

```
\[
\begin{array}{ccc}
\mathbb{Q}(\sqrt[3]{2}) & 12 & \mathbb{Q}(\sqrt[4]{3}) \\
3 & \downarrow & 4 \\
\mathbb{Q} & & \mathbb{Q} \\
\end{array}
\]
```

Hence:

\[
[K: \mathbb{Q}] = [K: \mathbb{Q}(\sqrt[4]{3})][\mathbb{Q}(\sqrt[4]{3}): \mathbb{Q}]
\]

\[
= 4 \left[K: \mathbb{Q} \right] \quad \Rightarrow \quad 12 \mid [K: \mathbb{Q}]
\]

Similarly,

\[
3 \mid [K: \mathbb{Q}]
\]

On the other hand:

\[
[K: \mathbb{Q}] \leq 12
\]

\[
= [K: \mathbb{Q}] = 12
\]