Last time:

Lemma: F, a field, $p(x) \in F[x]$ irreducible polynomial. Let a be a zero of $p(x)$ in some extension field of F. If $\phi: F \to F'$ is a field isomorphism, and b is a zero of $\phi(p(x))$ in some extension field of F', then there is an isomorphism $F(a) \to F'(b)$ taking a to b and agrees with ϕ on F.

Pf:

$F(a) \cong F[x]/\langle p(x) \rangle \cong F'[x]/\langle \phi(p(x)) \rangle = F'(b)$

Thm: Let $\phi: F \to F'$ be an isomorphism of fields, $f(x) \in F[x]$ a polynomial. If E is a splitting field for $f(x)$ over F, and E' is a splitting field for $\phi(f(x))$ over F', then there is an isomorphism from E to E' that agrees with ϕ on F.

Corollary: Let F be a field, $f(x) \in F[x]$. Then any
Corollary: Let \(E \) be a field, \(f(x) \in F[x] \). Then any two splitting fields of \(f(x) \) over \(E \) are isomorphic.

Pf of Cor: Apply the Theorem with \(F = F' \), \(\phi \) the identity map.

Pf of Thm: We induct on the degree of \(f(x) \).

- \(\text{deg}(f) = 1 \). In this case, \(E = F \) and \(E' = F' \), \(\phi : E \to E' \) is the desired map.

- \(\text{deg}(f) > 1 \): Let \(p(x) \) be an irreducible factor of \(f(x) \), \(a \) a zero of \(p(x) \) in \(E \), and \(b \) a zero of \(\phi(p(x)) \) in \(E' \).

By the Lemma above, there is an isomorphism \[\phi' : F(a) \rightarrow F'(b) \]
agreeing with \(\phi \) on \(F \) and taking \(a \) to \(b \).

Now: \(f(x) = (x-a)g(x) \), \(g(x) \in F(a)[x] \), i.e. \(g(x) \) has coefficients in \(F(a) \).

Moreover, \(E \) is the splitting field for \(g(x) \) over \(F \).

Indeed, clearly \(E \) splits \(g(x) \), and if \(a_2, \ldots, a_n \) are the
Indeed, clearly E splits $g(x)$, and if a_2, \ldots, a_n are the roots of g in E, then

$$E = F(a, a_2, \ldots, a_n) = F(a) (a_2, \ldots, a_n)$$

E is the splitting field for $g(x)$ over $F(a)$.

Similarly, E' is a splitting field for $\sigma(g(x))$ over $F'(b)$.

Since $\deg(g) < \deg(f)$, F an isomorphism

$$\beta : E \rightarrow E'$$

that agrees with σ on $F(a)$,

and thus agrees with δ on F.

\[\square\]

Example: $a \in \mathbb{Q}$ is positive, $\omega = e^{2\pi i/n}$ is a primitive n^{th} root of unity.

Consider $x^n - a \in \mathbb{Q}[x]$.

The roots of $x^n - a$ in \mathbb{C} are $a^{1/n}, \omega a^{1/n}, \omega^2 a^{1/n}, \ldots, \omega^{n-1} a^{1/n}$

$$\Rightarrow \quad x^n - a = (x - a^{1/n})(x - \omega a^{1/n}) \cdots (x - \omega^{n-1} a^{1/n})$$

and the splitting field of $x^n - a$ over \mathbb{Q} is

$$\mathbb{Q}(a^{1/n}, \omega).$$

Note: $\mathbb{Q}(a^{1/n}, \omega a^{1/n}) = \mathbb{Q}(a^{1/n}, \omega)$.
Note: \(\mathbb{Q}(a^n, \omega a^n) = \mathbb{Q}(a^n, \omega) \)

Also: \(\omega \) is not a root of \(x^n - 1 \)

E.g. If \(n = 3, \ a = 2, \) the splitting field of \(x^3 - 2 \) over \(\mathbb{Q} \) is \(\mathbb{Q}(\sqrt[3]{2}, \ e^{2\pi i/3}) \)

Algebraic Extensions

Def 1: Let \(E \) be an extension field of a field \(F, \) and \(a \in E. \) We say \(a \) is algebraic over \(F \) if \(a \) is the zero of some nonzero polynomial in \(F[x]. \)

If \(a \) is not algebraic over \(F, \) then \(a \) is said to be transcendental over \(F. \)

An extension \(E \) of \(F \) is called algebraic over \(F \) if every element of \(E \) is algebraic over \(F. \)

If \(E \) is not algebraic over \(F, \) it is called a transcendental extension of \(F. \)

Examples
Examples

(0) Every element $a \in F$ is algebraic over F: If $a \in F$, then a is the zero of the polynomial $x - a \in F[x]$.

(1) $\sqrt{2}$ is algebraic over \mathbb{Q}, as $\sqrt{2}$ is the root of $x^2 - 2 \in \mathbb{Q}[x]$.

(2) $a \in \mathbb{Q}$ is positive, n integer, a^n is algebraic over \mathbb{Q} as a^n is a root of $x^n - a \in \mathbb{Q}[x]$.

(3) $i = \sqrt{-1}$ is algebraic over \mathbb{Q}.

(4) If it is known that π and e are transcendental over \mathbb{Q}, they are algebraic over \mathbb{R}. It is not known whether $\pi + e$ is transcendental over \mathbb{Q}.

(5) If F is a field, $x \in F(x)$ the fraction field of $F[x]$, then x is transcendental over F.

(5') More generally, suppose $g(x) \in F(x)$ is any nonconstant polynomial. Then g is transcendental over F. Indeed, consider

$$g^n + a_{n-1}g^{n-1} + \ldots + a_0, \quad a_i \in F.$$

Then this cannot be 0 in $F(x)$, because it is a
Then this cannot be 0 in $F(x)$, because it is a non-constant polynomial. (It has degree $n \deg(g)$.)

Theorem. Let E be an extension field of the field F, and let $a \in E$. If a is transcendental over F, then $F(a) \cong F(x)$. If a is algebraic over F, then $F(a) \cong F[x]/\langle p(x) \rangle$ where p is a polynomial in $F[x]$ of minimum degree such that $p(a) = 0$.

Moreover, $p(x)$ is irreducible over F.