Last time: Semidirect products

Thm (Cayley's Thm) Every finite gp G is isom to a subgroup S_n for some n. If $|G| = n$, then G is isom to a subgroup of S_n.

Def 1 A permutation repn of a gp G is $\phi: G \to S_n$, a homom.

Proof G a gp. There is a bijective corr between perm repns of G and actions of G on $\{1, 2, \ldots, n\}$.

Pf: Suppose $G \subseteq \{1, 2, \ldots, n\}$.

For each g, have $m_g: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$

Define $\phi: G \to S_n$ or $\phi(g) = m_g$

$$\phi(g_1 g_2) = m_{g_1 g_2} = m_{g_1} \circ m_{g_2} = \phi(g_1) \phi(g_2)$$

action

Conversely, suppose $\phi: G \to S_n$ is a homom. Then define $m_g: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$ as $m_g = \phi(g)$.

This defines an action G as $\{1, 2, \ldots, n\}$.

Cor Let $\text{Perm}(S)$ denote the gp of permutations of a set S. Then, there is a bijective correspondence between actions of a gp G on S and homom $\phi: G \to \text{Perm}(S)$.
actions of a group G on a set S and homomorphism $\phi: G \rightarrow \text{Perm}(S)$.

Def: An action is said to be **faithful** if
gs = s \quad \forall s \in S \implies g = 1.
Equivalently, $\ker \phi \cap G = \{1\}$.

Pf of Cayley's Thm

- $S = G * G$ by left multiplication
- This defines $\phi: G \rightarrow \text{Perm}(S) \cong S_n$ if $|G| = n$.
- $G * G$ by left mult is faithful
- $\implies \phi: G \rightarrow S_n$ is injective
- $\implies G \leq \text{S}(G)$ as desired.

An important action of G on itself: $G * G$ by conjugation:
g * x = gxg^{-1}, \quad g \in G, \quad x \in G

The stabilizer of an element $x \in G$ for this action is

$\mathcal{Z}(x) = \{ g \in G : gxg^{-1} = x \} = \{ g \in G : gx = xg \}$
called the **centralizer** of x.
The orbit of an elt \(x \in G \) for this action is
\[
C(x) = \{ x' \in G : \exists g \in G \text{ st. } x' = gxg^{-1} \}
\]
called the conjugacy class of \(x \).

Counting formula: \(|G| = |C(x)|/|Z(x)| \)

Also, the conj. classes partition \(G \)

(\(\phi \)) \(|G| = \sum_{C_j} |C_j| = |C_1| + |C_2| + \ldots + |C_k| \)

\(C \) a conj. class \(C_j \) are the conj. classes

Moreover, the \(|C_j| \) divide \(|G| \),
This eqn (\(\phi \)) is called the class eqn of \(G \).

\textbf{Proof:} \(\phi \)
\begin{enumerate}
\item \(Z(x) \) contains \(x \), and contains the center \(Z \) of \(G \).
\item \(x \in G \) is in \(Z \), the center \(c \mapsto Z(x) = \{ c \} \Rightarrow C(x) = \{ x \} \).
\end{enumerate}

\textbf{Example of class eqn,}
\[G = S_3, \quad 1, x, y \]
\[
\text{• } Z(x): \text{ken}\ s \lfloor Z(x) \cap \{ 1 \} = 6, \ \text{ken}\ Z(x) \text{ contains}
1, x, x^2
\]
But \(y \notin Z(x) \) because \(yx \neq xy \)
But $y \not\in Z(x)$ because $xy \neq xy$

$\implies Z(x) = \{1, x, x^2\}$ has size 3,
$\implies |C(x)| = 2$

$\implies Z(y)$: know it contains 1, y. $x \not\in Z(y)$

$\implies |Z(y)| = 2 \implies |C(y)| = 3.$

$\implies 6 = |S_3| = 1 + 2 + 3$

p-gps

A gp G is called a p-gp if $|G| = p^n$ for some prime p.

Prop. The center of a p-gp is not trivial.

Pr.: Consider the class eqns.

\[p^n = |G| = 1 + |C_1| + |C_2| + \ldots + |C_r| \]

for the identity

Sizes of $|C_j| \mid p^n \implies$ if $|C_j| \neq 1$ then d is div by p.

$\implies \exists j \mid |C_j| = 1$. \implies center is nontrivial.

More generally

Thm. (Fixed pt Thm.) $G \cap S$, G a p-gp, $|S|$ finite
Prop. Every gp of order \(p^2 \) is abelian.

Proof: \(G \) a gp of order \(p^2 \). \(Z(G) \neq \{1\} \).

\[\Rightarrow |Z(G)| = p \text{ or } p^2. \]

Assume for sake of contradiction \(|Z(G)| = p \).

Then \(\exists x \in G \text{ with } x \notin Z(G) \).

Then \(Z(x) \in Z(G) \Rightarrow |Z(x)| > p \Rightarrow |Z(x)| = p^2 \Rightarrow Z(x) = G \Rightarrow xZ(G) = G. \]
Cor. If \(|G| = p^2 \), then either \(G \) is cyclic of order \(p^2 \) or \(G \) is a product of two cyclic groups of order \(p \).

PF: Every elt of \(G \) has order 1, \(p \), or \(p^2 \).

1. If \(G \) has an elt of order \(p^2 \), then \(G \cong C_{p^2} \) and we're done.
2. Otherwise, every elt \(
eq 1 \) in \(G \) has order \(p \).

Let \(x \in G \) be such an elt. \(\langle x \rangle \neq G \)

Let \(y \in G \) be an elt not in \(\langle x \rangle \).

Claim: \(\langle x \rangle \times \langle y \rangle \rightarrow G \)

PF: \(\times \) is a gp homom because \(x \times y \) commute.

- Image is subgroup \(G \nsubseteq \langle x \rangle \Rightarrow \text{image is } G \)
- Map is surj gp homom \(\Rightarrow \) isom \(G / \ker \text{ both sides \ have size } p^2 \).