Last time

\[G \text{ acts on } S \]

\[S \mapsto O_s \text{ the orbit} \]

\[H \subseteq G, \text{ the stab. of } s \]

Then \[G/H \cong O_s \text{ bijectively} \]

\[G \text{ a group acts } \}

\text{compatibly with } G/H \text{ action} \]

Proof: \[S \text{ a finite set, } G \text{ acts } \]

\[S, \text{ the stab. of } s \subseteq S, \text{ } O_s \]

\[\text{the orbit. Then} \]

\[|G| = |G_s| \cdot |O_s| \]

Pf: \[|O_s| = |G : G_s| = |G : C_s| \]

\[= \frac{|G|}{|C_s|} \]

In other words \[|O_s| = [G : C_s] \]

Also: \[|S| = |O_1| + |O_2| + \cdots + |O_k| \]

in the sum of

the sizes of the various orbits.

Leader: Will use this to prove: every group whose order is a prime has a nontrivial center.
Example $(\mathbb{Z}/10\mathbb{Z})^x \subset \mathbb{Z}/10\mathbb{Z}$

Non representatives
\[1, 3, 7, 9 \]

\[\mathcal{O}_1 \rightarrow 9 \xrightarrow{y} 3 \]

Stabilizer in $(\mathbb{Z}/10\mathbb{Z})^x$

\[\mathcal{O}_2 \rightarrow 2 \xrightarrow{y} 6 \]

Stabilizer is $\mathbb{Z}/3\mathbb{Z}$

\[|\mathcal{O}| = 10 = 1 + 4 + 4 + 1 \]

Example

$C = D_6$

$G \cong \text{regular hexagon}$

$Q = \{ x, x^2, x^3, x^4, x^5, y, xy, x^2y, x^3y, x^4y, x^5y, y^3 \}$

\[y \text{ is reflection across this axis} \]

\[x \text{ is rotation by $\frac{2\pi}{6}$} \]
S = set of line segments connecting two vertices in the hexagon

$|S| = 15$
- 6 edges
- 3 diagonals
- 6 semi-diagonals

Understand the orbits and stabilizers for the G action on S

Other orbits of G

G contains 3 reflections thru diagonals

3 reflections thru those lines

$|S| = 15 = (3 \text{ diags}) + (16 \text{ semi diags}) + (6 \text{ edges})$

Stab. of a diagonal must have size 4

Stab. must have size 2

Stab. 1, x,y

Stab. must have size 2

G contains 3 reflections thru diagonals

3 reflections thru those lines

$|S| = 15 = (3 \text{ diags}) + (16 \text{ semi diags}) + (6 \text{ edges})$
Semi-direct products

- Have groups $H, K \rightarrow H \times K$
- Generalization of this constructs involves group actions
- Setup: If $K \leq H$ acts by automorphisms, meaning

 $k \cdot (h_1, h_2) = (k \cdot h_1, k \cdot h_2)$

- We can construct a new group within $H \times K$

Recall: $\text{Mn} \subseteq \mathbb{R}^n$, group of isometries

$T_n \leq \text{Mn}$, the subgroup of translations

$T_n = \{ t_v : v \in \mathbb{R}^n \} \ltimes (\mathbb{R}^n, +)$
$T_n = \{ t_v : v \in \mathbb{R}^n \} \times (\mathbb{R}^n, +)$.

Facts

- $M_n = T_n \ltimes O_n$, O_n the orthogonal group
- $\varphi : M_n \rightarrow O_n$ is a gp homomorphism, with kernel T_n
- $t_v \varphi \rightarrow \varphi$

Multiplication $(t_v \varphi)(t_{v'} \varphi') = t_v \varphi(v') \varphi' \varphi$

one is using an action of O_n on $T_n \times \mathbb{R}^n$

- This is an example of a semi-direct product
- This is a special case of the general setup

The construction

- Suppose I have gps H, K
- $\phi : K \rightarrow \text{Aut}(H) \times$ a set of isomorphisms $H \rightarrow H$

In other words, $K \ltimes H$ by gp isomorphisms.

We will write ϕ_k to be the value of ϕ applied to $k \in K$

$\Rightarrow \phi_k \in \text{Aut}(H)$

$\Rightarrow \phi_k(h_1 h_2) = \phi_k(h_1) \phi_k(h_2)$.

Define $H \rtimes_{\phi} K$ to be the set of pairs (h, k) with $h \in H$, $k \in K$
with multiplication

\[(h_1, k_1) \cdot (h_2, k_2) = (h_1 \phi_{k_1}(h_2), k_1 k_2)\]

Thm 2) \(H \times \phi K \) is a sp

b) The map \(H \times \phi K \rightarrow K \) given by \((h, k) \mapsto k\) is a surjective sp homomorphism with kernel \(H \)

c) If \(\phi : K \rightarrow \text{Act}(H) \) is the identity map, then \(H \times \phi K \cong H \times K \), the direct product of \(H \times K \)