Last time: \[n \geq 1 \]

\[D_n = \langle x, y \mid x^n = 1, y^2 = 1, yxy^{-1} = x^{-1} \rangle \]

Classify subgps of \(O_2 \) that are finite:

either \(\cong C_n \)

\(= D_n \)

Thm: The gp \(D_n \) has order \(2n \), and \(\exists \) injective homomorphism \(D_n \rightarrow C_2 \).

Lemm: Suppose \(S = \{ s_1, s_2, \ldots \} \) a set, and \(\mathcal{F} \) denote the free gp on \(S \). Suppose moreover \(G' \) is a gp, and have a collection of elts \(\{ g'_s \}_{s \in S} \). Then \(\exists \) a unique gp homomorphism \(\varphi: \mathcal{F} \rightarrow G' \) with \(\varphi(s) = g'_s \) \(\forall s \in S \).

Ex: \(S = \{ x, y \} \)

\(G' = S_3 = \langle x, y \mid x^3 = 1, y^2 = 1 \rangle \)

Then \(\mathcal{F} \)

\(\cong S_3 \)

\[x \rightarrow \alpha \]

\[y \rightarrow \beta \]

\[x^{-3} \rightarrow x^{-3} y x^3 \]

\[X^{-3} YX^3 Y^{-1} \rightarrow x^{-3} y x^3 y^3 \]

Pf of Thm

First step \(|D_n| \leq 2n \)
First step \(|D_n| \leq 2^n \)

Second step: \(\varphi : D_n \to O_2 \) and prove \(\varphi(D_n) \geq 2^n \)

\[\Rightarrow 2^n = |D_n| \geq |\varphi(D_n)| \geq 2^n \]

\[\Rightarrow |D_n| = 2^n \text{ and } \varphi \text{ is injective} \]

Step 1 Can use the relators \(\langle x^n = 1, y^2 = 1, yxy^{-1} = x^{-1} \rangle \)

to put any word in \(x \) and \(y \) into the form

\[x^j y^k \quad 0 \leq j \leq n-1, \quad 0 \leq k < n-1 \]

\[\{x, x^2, \ldots, x^{n-1}, y, xy, \ldots, x^{n-1}y \} \subseteq 2n \text{ elt's} \]

Pf. Use \(yg = x^{-1}y \) to move all the \(y \)'s in the word to the right.

Thus \(x^n = 1, y^2 = 1 \) to see that the power of \(x \) is between 0 and \(n-1 \) and the power of \(y \) is 0 or 1.

\[\Rightarrow |D_n| \leq 2^n . \]

Define \(X = P_{2\pi} = \begin{pmatrix} \cos(2\pi n) & -\sin(2\pi n) \\ \sin(2\pi n) & \cos(2\pi n) \end{pmatrix} \in O_2 \)

\[Y = I = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in O_2 \]

(lemma a free group \(\exists \varphi : \mathbb{F}_{2n} \to O_2 \), up to homomorphism.)
Lemma a free group $F = \{x, y\} \rightarrow \mathbb{C}^2$ is homom.

$x \mapsto X$

$y \mapsto Y$

Note: $X^n = 1$, $Y^2 = 1$, $YXY^{-1} = X^{-1}$

$\Rightarrow X^n \in \ker \phi$, $y^2 \in \ker \phi$, $yx^{-1} \in \ker \phi$

$\Rightarrow \phi$ induces $\overline{\phi} : \overline{F} = \{x, y\} \rightarrow \mathbb{C}^2$

$D_n = \langle x^n, y^2, yxy^{-1}x \rangle$

$\overline{F}[x, y]/(\ker \overline{\phi})$

$\ker \overline{\phi} = \langle x^n, y^2, yxy^{-1}x \rangle$

$\overline{F}[x, y]/(\ker \overline{\phi})$ is the smallest normal subgroup containing these elts.

$2n \geq |D_n| > |\overline{\phi}(D_n)| = \langle x, y \rangle \leq \mathbb{C}^2$

Subgrp of \mathbb{C}^2 gend by x, y.

Claim: $\langle x, y \rangle$ has size at least $2n$

$\overline{\phi}(D_n) = \{1, x, x^2, \ldots, x^{n-1}, y, xy, \ldots, x^{n-1}y \}$

$\Rightarrow 2n$

\Rightarrow These $2n$ elts are distinct.

DFi
The 2n elts are distinct.

Indeed, the \(x_j \) are distinct from the \(x_k \) as seen by taking determinants.

The \(x^j, x^k \) for \(j \neq k \) in \(\{0, 1, \ldots, n-1\} \) are distinct because \(X \) has order \(n \).

Case of Part: \(\varphi: D_n \to \mathbb{Z}_2 \)

\[x \mapsto 2 \pi i \]

\[y \mapsto \varphi = (c_{0,1}) \]

is an injective gp homom.

Proof: \(D_3 \cong S_3 \).

Pf: \(D_3 = \langle x, y | x^3 = 1, y^2 = 1 \rangle \cong S_3 = \langle x, y | x^3 = 1, y^2 = 1 \rangle \)

For \(n > 3 \), \(D_n \not\cong S_n \)

\[\frac{2n}{n!} \]

Thus, \(S_3 \) is a finite subgp.

a) If \(G \leq S_3 \), then \(G \cong C_n \) for some \(n \).

b) If \(G \not\cong S_3 \), then \(G \cong D_n \) for some \(n \).

\(\Gamma' \leq (\mathbb{R}, +) \) is a subgp. \(\Gamma' \) is said to be discrete
Define $\Gamma \leq (\mathbb{R}, +)$ is a subgroup Γ is said to be discrete if $\exists \varepsilon > 0$ so that $\forall \gamma \in \Gamma$, $\gamma \neq 0$ then $|\gamma| > \varepsilon$.

Lemma: \mathbb{R}_+^\times is discrete subgroup. Then $\exists a > 0$ so that $\Gamma = \mathbb{Z}a$ or $\Gamma < \mathbb{Z}a$.

Proof: If $\Gamma < \mathbb{Z}a$ then done.

Otherwise, $\exists a' \in \Gamma$, $a' \neq 0$. $-a' \in \Gamma$.

WLOG can assume $a' > 0$.

Claim: \exists finitely many x in Γ with $0 \leq x \leq a'$.

Proof: There exists $\varepsilon > 0$ so that if $b, c \in \Gamma$, $b \neq c$ then $|b - c| > \varepsilon$. \Rightarrow In any bounded interval of \mathbb{R} there's at most finitely many elts of Γ. In particular, finitely many in $[0, a']$.

Claim: \exists a smallest positive elt $a \in \Gamma$.

$\Rightarrow \mathbb{Z}a \leq \Gamma$ (clear).

Claim: $\Gamma \leq \mathbb{Z}a$.

Proof: Suppose $b \in \Gamma$ $\Rightarrow \exists c \in \mathbb{R}$ with $b = ca$.

$r = \frac{c}{\gamma}$ for $\gamma \in \mathbb{Z}$ and $0 < r < 1$.

\[r = m + r_0 \quad \text{for } m \in \mathbb{Z} \quad \text{and } r_0 < 1 \]
\[\text{(e.g., } -3.7 = -4 + 0.3) \]

\[b = r_0 a = (m + r_0) a = ma + r_0 a \]
\[\Rightarrow b - ma = r_0 a \quad \quad 0 \leq r_0 a < a \]
\[\therefore r_0 a = 0. \]
\[\Rightarrow b = ma \checkmark. \]

Pf of Thm

a) \(G \subseteq SO_2 \). Define

\[\Gamma = \{ \alpha \in \mathbb{R}^2 : \rho_\alpha \in G \} \]

\(\text{rotation by } \alpha \)

- \(\Gamma \subseteq (\mathbb{R}^+)^2 \) is a subgroup

- \(\Gamma \) is discrete \(\left(\ldots, 0, 1, 1, 1, \ldots \right) \) because \(G \) is finite

- \(2\pi \in \Gamma \) because \(\rho_{2\pi} = 1 \).

Lemma: \(\Gamma = Za \) for some \(a > 0 \).

\[2\pi = n \cdot a \quad \text{for some int. } n \]

\[\Rightarrow a = 2\pi / n \quad \text{for some } n. \]

\[\Rightarrow G = C_n = \langle \rho_{2\pi/n} \rangle \subseteq SO_2 \checkmark. \]
\[G = C_n = \langle P_{2\pi/n} \rangle \leq SO_2 \]