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1. Review

1.1. Power series. A power series about a point x0 is an infinite sum

(1) f(x) =

∞∑
n=0

ak(x− x0)k.

Above, x is a variable and ak are constants. The power series converges at x = c
if the corresponding infinite sum converges. Otherwise the series is said to diverge.
A series converges absolutely if the sum

(2)
∞∑

n=0

|ak(x− x0)k|

converges. We use the following terminology for convergence:
• absolute convergence: (1) and (2) converge.
• conditional convergence: (1) converges but (2) does not.
• divergence: both (1) and (2) do not converge.

A real number ρ is the radius of convergence of the series (1) if for all |x−x0| <
ρ, the (1) converges absolutely. We distinguish two special cases:

• ρ = 0 if the series converges only for x = x0 (i.e., the series diverges for
general x).

• ρ =∞ when the series converges for all real numbers x.
�

Caution 1. Note that even when ρ = 0, the series still converges for x0. Hence,
in this case, it is incorrect to state the series diverges for all x.

If an are eventually non-zero and

lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ = L

where 0 ≤ L ≤ ∞, then ρ = L.
We can add and multiply power series using the following formulas
(1) (Addition)

∞∑
n=0

an(x− x0)n +

∞∑
n=0

bn(x− x0)n =

∞∑
n=0

(an + bn)(x− x0)n.

(2) (Multiplication)( ∞∑
n=0

an(x− x0)n
)
·

( ∞∑
n=0

bn(x− x0)n
)

=

∞∑
n=0

cn(x− x0)n

1
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where
cn =

∑
i+j=n

aibj .

This just means that cn is just the sum of all indices that add up to to n.
If the infinite sum in (1) converges to a values of a function f(x) for all x in

some positive interval around x0, then f is said to be analytic at x0. In this case,
within the radius of convergence, we can compute

f ′(x) =

∞∑
n=0

d

dx
an(x− x0)n =

∞∑
n=1

nan(x− x0)n−1∫
f(x)dx =

∞∑
n=0

∫
an(x− x0)ndx =

∞∑
n=0

an
n+ 1

(x− x0)n+1 + C.

Some common power series expansions of analytic functions:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·

sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
+ · · ·

cosx =

∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+
x4

4!
+ · · ·

lnx =

∞∑
n=1

(−1)n−1

n
(x− 1)n = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 + · · ·

1

1− x
=

∞∑
k=0

xk = 1 + x+ x2 + · · ·

Remark 1. We can derive the expressions for sin and cos using eit = cos(t)+i sin(t)
and the series formula for ex. This is a helpful exercise.

1.2. Solving differential equations using power series. Suppose we are given
a second order equation in standard form

y′′ + p(x)y′ + q(x)y = 0.

A point x0 is called ordinary if both p and q are analytic at x0. A point that is
not ordinary is called singular.

If the above differential equation is given and x0 is an ordinary point, then we
can obtain a power series solution to the differential equation using the following
steps

(1) Assume that y is also analytic at x0 and is given by

y(x) =

∞∑
n=0

an(x− x0)n.

(2) Expand p(x) and q(x) as power series around x0.
(3) Take derivatives of y term-by-term and obtain an infinite sum corresponding

to the differential equation (re-indexing whenever necessary).
(4) Starting with n = 0, recursively solve for an for all n.
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1.3. Matrices and vectors. We use the notation A = [aij ] to indicate that A is
a matrix with entries aij . Instead of constants, we can let aij be functions of some
variable t and let

A(t) = [aij(t)].

All the usual rules for matrix operations apply for these matrices. A matrix will be
called constant if all its entries are constant functions of t.

Such a matrix is differentiable at t0 is all entries aij(t) are differentiable at t0.
In this case the derivative of A is again a matrix given by

dA

dt
(t0) = A′(t0) = [a′ij(t0)].

Similarly, ∫ b

a

A(t)dt =

[∫ b

a

aij(t)dt

]
.

Differentiation of matrices satisfies the following properties
(1) (Linearity) Suppose α and β are constant matrices. Then

d

dt
[αA+ βB] = α

dA

dt
+ β

dB

dt
.

(2) (Product rule)
d

dt
[AB] = A

dB

dt
+
dA

dt
B.

�

Caution 2. Recall that matrix multiplication is not necessarily commutative.
Hence we need to be careful about the order of matrix multiplication in the product
rule!

2. Problems

Problem 1. Find the radius of convergence of
∞∑
0

(2n)!

(n!)2
xn.

Solution. Letting an = (2n)!
(n!)2 and using the ratio test,

lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ = lim
n→∞

(2n)!

(n!)2
· [(n+ 1)!]2

(2n+ 2)!
= lim

n→∞

(n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)
=

1

4
.

So the radius of convergence is ρ = 1
4 .

Problem 2. Starting from the geometric series and the power series of ex, use oper-
ations on series (substitution, addition, multiplication, differentiation, integration),
to find a series for tan−1(x).
Solution. We recall that

d

dx
tan−1(x) =

1

1 + x2
=

∞∑
0

(−1)nx2n.
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Integrating both sides,

tan−1(x) =

∞∑
0

(−1)n

2n+ 1
x2n+1 + C.

Using the substitution x = 0, we get C = 0.

Problem 3. Show that

y =

∞∑
0

x2n+1

(2n+ 1)!

solves the differential equation
y′′ − y = 0.

Solution. Differentiating term-by-term, we get

y′ =

∞∑
0

(2n+ 1)x2n

(2n+ 1)!
=

∞∑
0

x2n

(2n)!
,

y′′ =

∞∑
1

2nx2n−1

(2n)!
=

∞∑
1

x2n−1

(2n− 1)!
=

∞∑
0

x2n+1

(2n+ 1)!
.

This shows that y = y′′ or y′′ − y = 0.

Problem 4. For the nonlinear initial value problem

y′ = x+ y2, y(0) = 1,

find the first four nonzero terms of a series solution y =
∑∞

0 anx
n.

Solution. Since we only care about the first four terms, we may write

y = a0 + a1x+ a2x
2 + a33 + · · ·

y′ = a1 + 2a2x+ 3a3x
2 + 4a4x

3 + · · · .

From the initial conditions, y(0) = a0 = 1. Now,

y2 = (1 + a1x+ a2x
2 + a33 + · · · ) · (1 + a1x+ a2x

2 + a33 + · · · )
= 1 + 2a1x+ (2a2 + a21)x

2 + (2a3 + 2a2a1)x
3 + · · ·

The given differential equation implies that

a1 + 2a2x+ 3a3x
2 + 4a4x

3 = 1 + (2a1 + 1)x+ (2a2 + a21)x
2 + (2a3 + 2a2a1)x

3 + · · ·
Equating, the relevant coefficients

a1 = 1,

2a2 = 2a1 + 1 = 3 =⇒ a2 =
3

2
,

3a3 = 2a2 + a21 = 4 =⇒ a3 =
4

3
.

So,

y = 1 + x+
3

2
x2 +

4

3
x3 + · · ·

Problem 5. Find a series solution to the initial value problem

(1− x)y′ − y = 0, y(0) = 1.
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Solution. We first compute the relevant power series

y =

∞∑
0

anx
n

y′ =

∞∑
0

nanx
n−1 =

∞∑
0

(n+ 1)an+1x
n

xy′ =

∞∑
0

nanx
n

So, using the given differential equation, and equating the coefficient of xn to 0, we
get

(n+ 1)an+1 − nan − an = 0 =⇒ an+1 =
(n+ 1)an
(n+ 1)

= an.

Since y(0) = 1, a0 = 1 and an = 1 for all n. We conclude

y = 1 + x+ x2 + x3 + · · · = 1

1− x
.

Problem 6. Find two independent power series
∑
anx

n solutions to y′′ − 4y = 0
by obtaining a recursively formula for the an.
Solution. If y =

∑∞
0 anx

n, then

y′′ =

∞∑
2

ann(n− 1)xn−2 =

∞∑
0

an+2(n+ 2)(n+ 1)xn.

So, using the differential equation and equating the coefficients of xn to zero, we
obtain

an+2(n+ 2)(n+ 1)− 4an = 0 =⇒ an+1 =
4an

(n+ 1)(n+ 1)
.

So, for even indices, we have

a2 =
4

2 · 1
· a0,

a4 =
4

4 · 3
· 4

2 · 1
· a0 =

42

4!
a0, · · ·

Similarly, for the odd indices,

a3 =
4

3 · 2
a1,

a5 =
4

5 · 4
· 4

3 · 2
a1 =

42

5!
a1, · · ·

Hence, the two independent solutions are given by series comprising of the even
and odd indices respectively. That is

ye = 1 +
4

2!
x2 +

42

4!
x4 +

43

6!
x6 + · · · =

∞∑
0

4n

n!
x2n

yo = x+
4

3!
x3 +

42

5!
x5 + · · · =

∞∑
0

4n

(2n+ 1)!
x2n+1

are the two independent solutions.


