MAR. 09 DISCUSSION NOTES SECTION B05/B06, MATH 20D (WI21)

ABHIK PAL

1. Review

1.1. Power series. A power series about a point x_{0} is an infinite sum

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k} \tag{1}
\end{equation*}
$$

Above, x is a variable and a_{k} are constants. The power series converges at $x=c$ if the corresponding infinite sum converges. Otherwise the series is said to diverge. A series converges absolutely if the sum

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{k}\left(x-x_{0}\right)^{k}\right| \tag{2}
\end{equation*}
$$

converges. We use the following terminology for convergence:

- absolute convergence: (1) and (2) converge.
- conditional convergence: (1) converges but (2) does not.
- divergence: both (1) and (2) do not converge.

A real number ρ is the radius of convergence of the series (1) if for all $\left|x-x_{0}\right|<$ ρ, the (1) converges absolutely. We distinguish two special cases:

- $\rho=0$ if the series converges only for $x=x_{0}$ (i.e., the series diverges for general x).
- $\rho=\infty$ when the series converges for all real numbers x.

Caution 1. Note that even when $\rho=0$, the series still converges for x_{0}. Hence, in this case, it is incorrect to state the series diverges for all x.

If a_{n} are eventually non-zero and

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=L
$$

where $0 \leq L \leq \infty$, then $\rho=L$.
We can add and multiply power series using the following formulas
(1) (Addition)

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}+\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right)\left(x-x_{0}\right)^{n} .
$$

(2) (Multiplication)

$$
\left(\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}\right)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}
$$

where

$$
c_{n}=\sum_{i+j=n} a_{i} b_{j} .
$$

This just means that c_{n} is just the sum of all indices that add up to to n.
If the infinite sum in (1) converges to a values of a function $f(x)$ for all x in some positive interval around x_{0}, then f is said to be analytic at x_{0}. In this case, within the radius of convergence, we can compute

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=0}^{\infty} \frac{d}{d x} a_{n}\left(x-x_{0}\right)^{n}=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \\
\int f(x) d x & =\sum_{n=0}^{\infty} \int a_{n}\left(x-x_{0}\right)^{n} d x=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left(x-x_{0}\right)^{n+1}+C .
\end{aligned}
$$

Some common power series expansions of analytic functions:

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\sin x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots \\
\ln x & =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(x-1)^{n}=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}+\cdots \\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots
\end{aligned}
$$

Remark 1. We can derive the expressions for \sin and \cos using $e^{i t}=\cos (t)+i \sin (t)$ and the series formula for e^{x}. This is a helpful exercise.
1.2. Solving differential equations using power series. Suppose we are given a second order equation in standard form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 .
$$

A point x_{0} is called ordinary if both p and q are analytic at x_{0}. A point that is not ordinary is called singular.

If the above differential equation is given and x_{0} is an ordinary point, then we can obtain a power series solution to the differential equation using the following steps
(1) Assume that y is also analytic at x_{0} and is given by

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

(2) Expand $p(x)$ and $q(x)$ as power series around x_{0}.
(3) Take derivatives of y term-by-term and obtain an infinite sum corresponding to the differential equation (re-indexing whenever necessary).
(4) Starting with $n=0$, recursively solve for a_{n} for all n.
1.3. Matrices and vectors. We use the notation $A=\left[a_{i j}\right]$ to indicate that A is a matrix with entries $a_{i j}$. Instead of constants, we can let $a_{i j}$ be functions of some variable t and let

$$
A(t)=\left[a_{i j}(t)\right] .
$$

All the usual rules for matrix operations apply for these matrices. A matrix will be called constant if all its entries are constant functions of t.

Such a matrix is differentiable at t_{0} is all entries $a_{i j}(t)$ are differentiable at t_{0}. In this case the derivative of A is again a matrix given by

$$
\frac{d A}{d t}\left(t_{0}\right)=A^{\prime}\left(t_{0}\right)=\left[a_{i j}^{\prime}\left(t_{0}\right)\right] .
$$

Similarly,

$$
\int_{a}^{b} A(t) d t=\left[\int_{a}^{b} a_{i j}(t) d t\right]
$$

Differentiation of matrices satisfies the following properties
(1) (Linearity) Suppose α and β are constant matrices. Then

$$
\frac{d}{d t}[\alpha A+\beta B]=\alpha \frac{d A}{d t}+\beta \frac{d B}{d t}
$$

(2) (Product rule)

$$
\frac{d}{d t}[A B]=A \frac{d B}{d t}+\frac{d A}{d t} B
$$

Caution 2. Recall that matrix multiplication is not necessarily commutative. Hence we need to be careful about the order of matrix multiplication in the product rule!

2. Problems

Problem 1. Find the radius of convergence of

$$
\sum_{0}^{\infty} \frac{(2 n)!}{(n!)^{2}} x^{n}
$$

Solution. Letting $a_{n}=\frac{(2 n)!}{(n!)^{2}}$ and using the ratio test,

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{(2 n)!}{(n!)^{2}} \cdot \frac{[(n+1)!]^{2}}{(2 n+2)!}=\lim _{n \rightarrow \infty} \frac{(n+1)(n+1)}{(2 n+2)(2 n+1)}=\frac{1}{4}
$$

So the radius of convergence is $\rho=\frac{1}{4}$.
Problem 2. Starting from the geometric series and the power series of e^{x}, use operations on series (substitution, addition, multiplication, differentiation, integration), to find a series for $\tan ^{-1}(x)$.
Solution. We recall that

$$
\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}=\sum_{0}^{\infty}(-1)^{n} x^{2 n}
$$

Integrating both sides,

$$
\tan ^{-1}(x)=\sum_{0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}+C
$$

Using the substitution $x=0$, we get $C=0$.
Problem 3. Show that

$$
y=\sum_{0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}
$$

solves the differential equation

$$
y^{\prime \prime}-y=0
$$

Solution. Differentiating term-by-term, we get

$$
\begin{aligned}
y^{\prime} & =\sum_{0}^{\infty} \frac{(2 n+1) x^{2 n}}{(2 n+1)!}=\sum_{0}^{\infty} \frac{x^{2 n}}{(2 n)!}, \\
y^{\prime \prime} & =\sum_{1}^{\infty} \frac{2 n x^{2 n-1}}{(2 n)!}=\sum_{1}^{\infty} \frac{x^{2 n-1}}{(2 n-1)!}=\sum_{0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} .
\end{aligned}
$$

This shows that $y=y^{\prime \prime}$ or $y^{\prime \prime}-y=0$.
Problem 4. For the nonlinear initial value problem

$$
y^{\prime}=x+y^{2}, \quad y(0)=1
$$

find the first four nonzero terms of a series solution $y=\sum_{0}^{\infty} a_{n} x^{n}$.
Solution. Since we only care about the first four terms, we may write

$$
\begin{aligned}
y & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3}^{3}+\cdots \\
y^{\prime} & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots .
\end{aligned}
$$

From the initial conditions, $y(0)=a_{0}=1$. Now,

$$
\begin{aligned}
y^{2} & =\left(1+a_{1} x+a_{2} x^{2}+a_{3}^{3}+\cdots\right) \cdot\left(1+a_{1} x+a_{2} x^{2}+a_{3}^{3}+\cdots\right) \\
& =1+2 a_{1} x+\left(2 a_{2}+a_{1}^{2}\right) x^{2}+\left(2 a_{3}+2 a_{2} a_{1}\right) x^{3}+\cdots
\end{aligned}
$$

The given differential equation implies that
$a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}=1+\left(2 a_{1}+1\right) x+\left(2 a_{2}+a_{1}^{2}\right) x^{2}+\left(2 a_{3}+2 a_{2} a_{1}\right) x^{3}+\cdots$
Equating, the relevant coefficients

$$
\begin{aligned}
a_{1} & =1 \\
2 a_{2} & =2 a_{1}+1=3 \Longrightarrow a_{2}=\frac{3}{2} \\
3 a_{3} & =2 a_{2}+a_{1}^{2}=4 \Longrightarrow a_{3}=\frac{4}{3}
\end{aligned}
$$

So,

$$
y=1+x+\frac{3}{2} x^{2}+\frac{4}{3} x^{3}+\cdots
$$

Problem 5. Find a series solution to the initial value problem

$$
(1-x) y^{\prime}-y=0, \quad y(0)=1
$$

Solution. We first compute the relevant power series

$$
\begin{aligned}
y & =\sum_{0}^{\infty} a_{n} x^{n} \\
y^{\prime} & =\sum_{0}^{\infty} n a_{n} x^{n-1}=\sum_{0}^{\infty}(n+1) a_{n+1} x^{n} \\
x y^{\prime} & =\sum_{0}^{\infty} n a_{n} x^{n}
\end{aligned}
$$

So, using the given differential equation, and equating the coefficient of x^{n} to 0 , we get

$$
(n+1) a_{n+1}-n a_{n}-a_{n}=0 \Longrightarrow a_{n+1}=\frac{(n+1) a_{n}}{(n+1)}=a_{n} .
$$

Since $y(0)=1, a_{0}=1$ and $a_{n}=1$ for all n. We conclude

$$
y=1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x} .
$$

Problem 6. Find two independent power series $\sum a_{n} x^{n}$ solutions to $y^{\prime \prime}-4 y=0$ by obtaining a recursively formula for the a_{n}.
Solution. If $y=\sum_{0}^{\infty} a_{n} x^{n}$, then

$$
y^{\prime \prime}=\sum_{2}^{\infty} a_{n} n(n-1) x^{n-2}=\sum_{0}^{\infty} a_{n+2}(n+2)(n+1) x^{n}
$$

So, using the differential equation and equating the coefficients of x^{n} to zero, we obtain

$$
a_{n+2}(n+2)(n+1)-4 a_{n}=0 \Longrightarrow a_{n+1}=\frac{4 a_{n}}{(n+1)(n+1)}
$$

So, for even indices, we have

$$
\begin{aligned}
& a_{2}=\frac{4}{2 \cdot 1} \cdot a_{0}, \\
& a_{4}=\frac{4}{4 \cdot 3} \cdot \frac{4}{2 \cdot 1} \cdot a_{0}=\frac{4^{2}}{4!} a_{0}, \cdots
\end{aligned}
$$

Similarly, for the odd indices,

$$
\begin{aligned}
& a_{3}=\frac{4}{3 \cdot 2} a_{1}, \\
& a_{5}=\frac{4}{5 \cdot 4} \cdot \frac{4}{3 \cdot 2} a_{1}=\frac{4^{2}}{5!} a_{1}, \cdots
\end{aligned}
$$

Hence, the two independent solutions are given by series comprising of the even and odd indices respectively. That is

$$
\begin{aligned}
& y_{e}=1+\frac{4}{2!} x^{2}+\frac{4^{2}}{4!} x^{4}+\frac{4^{3}}{6!} x^{6}+\cdots=\sum_{0}^{\infty} \frac{4^{n}}{n!} x^{2 n} \\
& y_{o}=x+\frac{4}{3!} x^{3}+\frac{4^{2}}{5!} x^{5}+\cdots=\sum_{0}^{\infty} \frac{4^{n}}{(2 n+1)!} x^{2 n+1}
\end{aligned}
$$

are the two independent solutions.

