MAR. 02 DISCUSSION NOTES SECTION B05/B06, MATH 20D (WI21)

ABHIK PAL

1. Review

1.1. Laplace Transform and Discontinuous Functions. A unit step function $u(t)$ is a function defined by

$$
u(t)= \begin{cases}0, & t<0 \\ 1, & t>0\end{cases}
$$

We may tweak the location and size of the step using the transforms

- $u(t-a)$ has the step at a, and
- $M u(t)$ has a step with height M.

The rectangular window function $\Pi_{a, b}(t)$ is a function that is 1 on the interval (a, b) and zero elsewhere and is defined by

$$
\Pi_{a, b}(t)=u(t-a)-u(t-b)
$$

If $f(t)$ is any piece-wise continuous function we may write it as a sum of products of the "pieces" with $\Pi_{a, b}(t)$ and $u(t)$. If $a \geq 0$, then the Laplace transforms of these products is given by

$$
\mathcal{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} \mathcal{L}\{f\}(s)
$$

and the Laplace inverse of $e^{-a s} F(s)$ is given by

$$
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}(t)=f(t-a) u(t-a)
$$

1.2. Convolutions. The convolution of two piecewise continuous functions $f(t)$ and $g(t)$ is given by the integral

$$
(f * g)(t)=\int_{0}^{t} f(t-v) g(v) d v
$$

We may check that convolution satisfies the following properties
(1) $f * g=g * f$,
(2) $f *(g+h)=f * g+f * h$,
(3) $(f * g) * h=f *(g * h)$,
(4) $f * 0=0$.

Convolution of two functions behaves especially well with respect to the Laplace transform. If f, g are exponential of order α, then

$$
\mathcal{L}\{f * g\}(s)=\mathcal{L}\{f\}(s) \cdot \mathcal{L}\{g\}(s)
$$

Similarly,

$$
\mathcal{L}^{-1}\{F(s) G(s)\}(t)=\underset{1}{\left(\mathcal{L}^{-1}\{F\} * \mathcal{L}^{-1}\{G\}\right)(t) ~}
$$

1.2.1. Solutions using Impulse Response Function. Suppose we are given the secondorder constant coefficient initial value problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=g ; \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

Then the unique solution to the differential equation is given by

$$
y(t)=(h * g)(t)+y_{k}(t)
$$

where $h(t)$ is the impulse response function

$$
h(t)=\mathcal{L}^{-1}\{H\}(t)=\mathcal{L}^{-1}\left\{\frac{1}{a s^{2}+b s+c}\right\}(t)
$$

and y_{k} is the unique solution to the homogeneous initial value problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 ; \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

Above, we call $H(s)$ the transfer function.
1.3. Dirac Delta. The Dirac delta distribution can be (loosely speaking) thought of as a "function" that is zero everywhere except at the origin, i.e.,

$$
\delta(t)= \begin{cases}+\infty, & t=0 \\ 0, & t \neq 0\end{cases}
$$

We also require $\delta(t)$ to satisfy

$$
\int_{-\infty}^{\infty} f(t) \delta(t) d t=f(0)
$$

By translating the argument, we may "pick up" different values of f,

$$
\int_{-\infty}^{\infty} f(t) \delta(t-a) d t=f(a)
$$

The Laplace transform of the delta distribution is given by

$$
\mathcal{L}\{\delta(t-a)\}(s)=e^{-a s}
$$

for $a \geq 0$.

2. Problems

Problem 1. Compute $\mathcal{L}\{f\}$ where

$$
f(t)=\left\{\begin{array}{lc}
t, & 0 \leq t \leq 1 \\
2-t, & 1 \leq t \leq 2 \\
0, & \text { otherwise }
\end{array}\right.
$$

Solution. We first express $f(t)$ in terms of $u(t)$.

$$
\begin{aligned}
f(t) & =t \Pi_{0,1}(t)+(2-t) \Pi_{1,2}(t) \\
& =t[u(t)-u(t-1)]+(2-t)[u(t-1)-u(t-2)] \\
& =t u(t)-u(t-2)-2 u(t-1)+(t-2) u(t-2) .
\end{aligned}
$$

Using the relevant formula for $\mathcal{L}\{f(t-a) u(t-a)\}$ for various a and using linearity, $\mathcal{L}\{f\}(s)=\mathcal{L}\{t u(t)\}-\mathcal{L}\{u(t-2)\}-2 \mathcal{L}\{u(t-1)\}+\mathcal{L}\{(t-2) u(t-2)\}=\frac{1}{s^{2}}\left(1-2 e^{-s}+e^{2 s}\right)$

Problem 2. Compute $\mathcal{L}\{f\}$ where $f(t)=|\sin (t)|$ for $t \geq 0$.
Solution. Using periodicity, we may write

$$
f(t)=|\sin (t)|=(-1)^{n} \sin (t), \quad n \pi \leq t \leq(n+1) \pi=\sum_{n=0}^{\infty}(-1)^{n} \sin (t) \Pi_{n \pi,(n+1) \pi}(t)
$$

For a fixed n, we have

$$
\begin{aligned}
\mathcal{L}\left\{\sin (t) \Pi_{n \pi,(n+1) \pi}(t) \sin (t)\right\} & =\mathcal{L}\{\sin (t) u(t-n \pi)\}-\mathcal{L}\{\sin (t) u(t-(n+1) \pi)\} \\
& =e^{-s n \pi} \mathcal{L}\{\sin (t+n \pi)\}-e^{-s(n+1) \pi} \mathcal{L}\{\sin (t+(n+1) \pi)\} \\
& =(-1)^{n} e^{-s n \pi} \mathcal{L}\{\sin (t)\}-(-1)^{n+1} e^{-s(n+1) \pi} \mathcal{L}\{\sin (t)\} \\
& =(-1)^{n} e^{-s n \pi}\left(\frac{1+e^{-s \pi}}{1+s^{2}}\right)
\end{aligned}
$$

Hence, we conclude

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\sum_{n=0}^{\infty}(-1)^{n} \mathcal{L}\left\{\sin (t) \Pi_{n \pi,(n+1) \pi}(t)\right\}=\sum_{n=0}^{\infty} e^{-s n \pi}\left(\frac{1+e^{-s \pi}}{1+s^{2}}\right) \\
& =\left(\frac{1+e^{-s \pi}}{1+s^{2}}\right) \sum_{n=0}^{\infty} e^{-s n \pi}=\left(\frac{1+e^{-s \pi}}{1+s^{2}}\right) \frac{1}{1-e^{-s \pi}}
\end{aligned}
$$

In the last step we treat the sum as a convergent geometric series with $r=e^{-s \pi}$.
Problem 3. Solve the initial value problem

$$
y^{\prime \prime}+2 y+2 y=h(t) ; \quad y(0)=0, \quad y^{\prime}(0)=1
$$

where

$$
h(t)=\left\{\begin{array}{lc}
1, & \pi \leq t \leq 2 \pi \\
0, & \text { otherwise }
\end{array}\right.
$$

Solution. Writing $h(t)=\Pi_{\pi, 2 \pi}(t)=u(t-\pi)-u(t-2 \pi)$, we see that

$$
\mathcal{L}\{h(t)\}(s)=\frac{e^{-s \pi}-e^{-2 s \pi}}{s} .
$$

If $Y=\mathcal{L}\{y\}$ using the initial values,

$$
\left(s^{2} Y-1\right)+2(s Y)+2 Y=\frac{e^{-s \pi}-e^{-2 s \pi}}{s} \Longrightarrow Y=\frac{1}{(s+1)^{2}+1}\left[1+\frac{e^{-s \pi}-e^{-2 s \pi}}{s}\right]
$$

Using partial fractions, we may write the denominator above as

$$
\frac{1}{\left((s+1)^{2}+1\right) s}=\frac{1}{\left(s^{2}+2 s+2\right) s}=\frac{-\frac{1}{2}(s+1)-\frac{1}{2}}{(s+1)^{2}+1}+\frac{\frac{1}{2}}{s} .
$$

Taking the inverse Laplace transform, we get

$$
\begin{aligned}
y= & e^{-t} \sin (t) \\
& +\frac{1}{2}\left[1-e^{-(t-\pi)}(\sin (t-\pi)+\cos (t-\pi))\right] u(t-\pi) \\
& -\frac{1}{2}\left[1-e^{-(t-2 \pi)}(\sin (t-2 \pi)+\cos (t-2 \pi))\right] u(t-2 \pi) \\
= & e^{-t} \sin (t) \\
& +\frac{1}{2}\left[1+e^{-(t-\pi)}(\sin (t)+\cos (t))\right] u(t-\pi) \\
& -\frac{1}{2}\left[1-e^{-(t-2 \pi)}(\sin (t)+\cos (t))\right] u(t-2 \pi)
\end{aligned}
$$

Problem 4. Solve the initial value problem

$$
y^{\prime \prime}-3 y^{\prime}+2 y=t u(t) ; \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution. Note that we have

$$
\mathcal{L}\{t u(t)\}=\mathcal{L}\{t\}=\frac{1}{s^{2}}
$$

Taking $\mathcal{L}\{\cdot\}$ on both sides and setting $\mathcal{L}\{y\}=Y$, we get

$$
\left(s^{2} Y-s\right)-3(s Y-1)+2 Y=\frac{1}{s^{2}} \Longrightarrow Y=\frac{s-3}{(s-2)(s-1)}+\frac{1}{s^{2}(s-2)(s-1)}
$$

Using partial fractions

$$
Y=\frac{s^{3}-3 s^{2}+1}{s^{2}(s-2)(s-1)}=\frac{1}{s-1}-\frac{\frac{3}{4}}{s-2}+\frac{\frac{3}{4}}{s}+\frac{\frac{1}{2}}{s^{2}} .
$$

Computing $\mathcal{L}^{-1}\{Y\}$, we get

$$
y=\mathcal{L}^{-1}\{Y\}=e^{t}-\frac{3}{4} e^{2 t}+\frac{3}{4}+\frac{t}{2}
$$

Problem 5. Use convolution to compute

$$
\mathcal{L}^{-1}\left\{\frac{s}{(s+1)\left(s^{2}+4\right)}\right\} .
$$

Solution.

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s}{(s+1)\left(s^{2}+4\right)}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s+1} \cdot \frac{s}{s^{2}+4}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} * \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\} \\
& =e^{-t} * \cos (2 t)=\int_{0}^{t} e^{-(t-v)} \cos (2 v) d v \\
& =e^{-t} \int_{0}^{t} e^{-v)} \cos (2 v) d v=e^{-t}\left[\frac{e^{t}}{5}(\cos (2 t)+2 \sin (2 t))-\frac{1}{5}\right] \\
& =\frac{1}{5} \cos (2 t)+\frac{2}{5} \sin (2 t)-\frac{1}{5} e^{-t}
\end{aligned}
$$

Problem 6. Use convolution to compute

$$
\mathcal{L}^{-1}\left\{\frac{1}{\left(s^{2}+1\right)^{2}}\right\} .
$$

Solution.

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{1}{\left(s^{2}+1\right)^{2}}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\} * \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}=\sin (t) * \sin (t) \\
& =\int_{0}^{t} \sin (t-v) \sin (v) d v=\frac{1}{2} \int_{0}^{t} \cos (t-2 v)-\cos (t) d v \\
& =\frac{\sin (t)}{2}-\frac{t}{2} \cos (t)
\end{aligned}
$$

Problem 7. Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+y=\delta(t)+u(t-1) ; \quad y(0)=1, \quad y^{\prime}(0)=1 .
$$

Solution. Taking the Laplace transform of the right hand side, we get

$$
\mathcal{L}\{\delta(t)+u(t-1)\}=1+\frac{e^{-s}}{s}
$$

With $Y=\mathcal{L}\{y\}$, we see that

$$
\left(s^{2} Y-1\right)+2 s Y+Y=\left(s^{2}+2 s+1\right) Y-1=1+\frac{e^{-s}}{s}
$$

So,

$$
Y=\frac{2}{(s+1)^{2}}+e^{-s}\left[\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}\right] .
$$

Taking the inverse transform,
$y(t)=2 t e^{-t}+\left[1-e^{-(t-1)}-(t-1) e^{-(t-1)}\right] u(t-1)=2 t e^{-t}+\left[1-t e^{1-t}\right] u(t-1)$.

