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1. Review

1.1. Laplace Transform and Discontinuous Functions. A unit step func-
tion u(t) is a function defined by

u(t) =

{
0, t < 0,

1, t > 0.

We may tweak the location and size of the step using the transforms
• u(t− a) has the step at a, and
• Mu(t) has a step with height M .

The rectangular window function Πa,b(t) is a function that is 1 on the interval
(a, b) and zero elsewhere and is defined by

Πa,b(t) = u(t− a)− u(t− b).

If f(t) is any piece-wise continuous function we may write it as a sum of products
of the “pieces” with Πa,b(t) and u(t). If a ≥ 0, then the Laplace transforms of these
products is given by

L{f(t− a)u(t− a)} (s) = e−asL{f} (s)

and the Laplace inverse of e−asF (s) is given by

L−1
{
e−asF (s)

}
(t) = f(t− a)u(t− a).

1.2. Convolutions. The convolution of two piecewise continuous functions f(t)
and g(t) is given by the integral

(f ∗ g)(t) =

∫ t

0

f(t− v)g(v)dv.

We may check that convolution satisfies the following properties
(1) f ∗ g = g ∗ f ,
(2) f ∗ (g + h) = f ∗ g + f ∗ h,
(3) (f ∗ g) ∗ h = f ∗ (g ∗ h),
(4) f ∗ 0 = 0.
Convolution of two functions behaves especially well with respect to the Laplace

transform. If f, g are exponential of order α, then

L{f ∗ g} (s) = L{f} (s) · L {g} (s).

Similarly,
L−1 {F (s)G(s)} (t) = (L−1 {F} ∗ L−1 {G})(t).
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1.2.1. Solutions using Impulse Response Function. Suppose we are given the second-
order constant coefficient initial value problem

ay′′ + by′ + cy = g; y(0) = y0, y′(0) = y1.

Then the unique solution to the differential equation is given by

y(t) = (h ∗ g)(t) + yk(t)

where h(t) is the impulse response function

h(t) = L−1 {H} (t) = L−1
{

1

as2 + bs+ c

}
(t)

and yk is the unique solution to the homogeneous initial value problem

ay′′ + by′ + cy = 0; y(0) = y0, y′(0) = y1.

Above, we call H(s) the transfer function.

1.3. Dirac Delta. The Dirac delta distribution can be (loosely speaking) thought
of as a “function” that is zero everywhere except at the origin, i.e.,

δ(t) =

{
+∞, t = 0,

0, t 6= 0.

We also require δ(t) to satisfy∫ ∞
−∞

f(t)δ(t)dt = f(0).

By translating the argument, we may “pick up” different values of f ,∫ ∞
−∞

f(t)δ(t− a)dt = f(a).

The Laplace transform of the delta distribution is given by

L{δ(t− a)} (s) = e−as

for a ≥ 0.

2. Problems

Problem 1. Compute L{f} where

f(t) =


t, 0 ≤ t ≤ 1

2− t, 1 ≤ t ≤ 2

0, otherwise
.

Solution. We first express f(t) in terms of u(t).

f(t) = tΠ0,1(t) + (2− t)Π1,2(t)

= t[u(t)− u(t− 1)] + (2− t)[u(t− 1)− u(t− 2)]

= tu(t)− u(t− 2)− 2u(t− 1) + (t− 2)u(t− 2).

Using the relevant formula for L{f(t− a)u(t− a)} for various a and using linearity,

L{f} (s) = L{tu(t)}−L{u(t− 2)}−2L{u(t− 1)}+L{(t− 2)u(t− 2)} =
1

s2
(
1− 2e−s + e2s

)



MAR. 02 DISCUSSION NOTES 3

Problem 2. Compute L{f} where f(t) = | sin(t)| for t ≥ 0.

Solution. Using periodicity, we may write

f(t) = | sin(t)| = (−1)n sin(t), nπ ≤ t ≤ (n+ 1)π =

∞∑
n=0

(−1)n sin(t)Πnπ,(n+1)π(t).

For a fixed n, we have

L
{

sin(t)Πnπ,(n+1)π(t) sin(t)
}

= L{sin(t)u(t− nπ)} − L{sin(t)u(t− (n+ 1)π)}

= e−snπL{sin(t+ nπ)} − e−s(n+1)πL{sin(t+ (n+ 1)π)}

= (−1)ne−snπL{sin(t)} − (−1)n+1e−s(n+1)πL{sin(t)}

= (−1)ne−snπ
(

1 + e−sπ

1 + s2

)
.

Hence, we conclude

L{f(t)} =

∞∑
n=0

(−1)nL
{

sin(t)Πnπ,(n+1)π(t)
}

=

∞∑
n=0

e−snπ
(

1 + e−sπ

1 + s2

)

=

(
1 + e−sπ

1 + s2

) ∞∑
n=0

e−snπ =

(
1 + e−sπ

1 + s2

)
1

1− e−sπ
.

In the last step we treat the sum as a convergent geometric series with r = e−sπ.

Problem 3. Solve the initial value problem

y′′ + 2y + 2y = h(t); y(0) = 0, y′(0) = 1

where

h(t) =

{
1, π ≤ t ≤ 2π

0, otherwise
.

Solution. Writing h(t) = Ππ,2π(t) = u(t− π)− u(t− 2π), we see that

L{h(t)} (s) =
e−sπ − e−2sπ

s
.

If Y = L{y} using the initial values,

(s2Y −1)+2(sY )+2Y =
e−sπ − e−2sπ

s
=⇒ Y =

1

(s+ 1)2 + 1

[
1 +

e−sπ − e−2sπ

s

]
Using partial fractions, we may write the denominator above as

1

((s+ 1)2 + 1)s
=

1

(s2 + 2s+ 2)s
=
− 1

2 (s+ 1)− 1
2

(s+ 1)2 + 1
+

1
2

s
.
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Taking the inverse Laplace transform, we get

y = e−t sin(t)

+
1

2

[
1− e−(t−π)(sin(t− π) + cos(t− π))

]
u(t− π)

− 1

2

[
1− e−(t−2π)(sin(t− 2π) + cos(t− 2π))

]
u(t− 2π)

= e−t sin(t)

+
1

2

[
1 + e−(t−π)(sin(t) + cos(t))

]
u(t− π)

− 1

2

[
1− e−(t−2π)(sin(t) + cos(t))

]
u(t− 2π).

Problem 4. Solve the initial value problem

y′′ − 3y′ + 2y = tu(t); y(0) = 1, y′(0) = 0.

Solution. Note that we have

L{tu(t)} = L{t} =
1

s2
.

Taking L{·} on both sides and setting L{y} = Y , we get

(s2Y − s)− 3(sY − 1) + 2Y =
1

s2
=⇒ Y =

s− 3

(s− 2)(s− 1)
+

1

s2(s− 2)(s− 1)
.

Using partial fractions

Y =
s3 − 3s2 + 1

s2(s− 2)(s− 1)
=

1

s− 1
−

3
4

s− 2
+

3
4

s
+

1
2

s2
.

Computing L−1 {Y }, we get

y = L−1 {Y } = et − 3

4
e2t +

3

4
+
t

2
.

Problem 5. Use convolution to compute

L−1
{

s

(s+ 1)(s2 + 4)

}
.

Solution.

L−1
{

s

(s+ 1)(s2 + 4)

}
= L−1

{
1

s+ 1
· s

s2 + 4

}
= L−1

{
1

s+ 1

}
∗ L−1

{
s

s2 + 4

}
= e−t ∗ cos(2t) =

∫ t

0

e−(t−v) cos(2v)dv

= e−t
∫ t

0

e−v) cos(2v)dv = e−t
[
et

5
(cos(2t) + 2 sin(2t))− 1

5

]
=

1

5
cos(2t) +

2

5
sin(2t)− 1

5
e−t.
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Problem 6. Use convolution to compute

L−1
{

1

(s2 + 1)2

}
.

Solution.

L−1
{

1

(s2 + 1)2

}
= L−1

{
1

s2 + 1

}
∗ L−1

{
1

s2 + 1

}
= sin(t) ∗ sin(t)

=

∫ t

0

sin(t− v) sin(v)dv =
1

2

∫ t

0

cos(t− 2v)− cos(t)dv

=
sin(t)

2
− t

2
cos(t).

Problem 7. Solve the initial value problem

y′′ + 2y′ + y = δ(t) + u(t− 1); y(0) = 1, y′(0) = 1.

Solution. Taking the Laplace transform of the right hand side, we get

L{δ(t) + u(t− 1)} = 1 +
e−s

s
.

With Y = L{y}, we see that

(s2Y − 1) + 2sY + Y = (s2 + 2s+ 1)Y − 1 = 1 +
e−s

s
.

So,

Y =
2

(s+ 1)2
+ e−s

[
1

s
− 1

s+ 1
− 1

(s+ 1)2

]
.

Taking the inverse transform,

y(t) = 2te−t +
[
1− e−(t−1) − (t− 1)e−(t−1)

]
u(t− 1) = 2te−t + [1− te1−t]u(t− 1).


