FEB. 02 DISCUSSION NOTES SECTION B05/B06, MATH 20D (WI21)

ABHIK PAL

1. Review

1.1. Superposition Principle. Let

$$
\mathcal{L}(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y
$$

Suppose $y_{1}(t)$ is a solution to the differential equation $\mathcal{L}(y)=f_{1}$ and $y_{2}(t)$ is a solution to $\mathcal{L}(y)=f_{2}$. The superposition principle states that $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is a solution to $\mathcal{L}(y)=c_{1} f_{1}+c_{2} f_{2}$.

We used the method of undetermined coefficients to solve equations where the inhomogeneity $f(t)$ had a particularly simple form. Using the superposition principle, we will be able to treat cases where the inhomogeneity $f(t)$ can be split into a sum of simpler terms.
1.2. Variation of Parameters. Suppose

$$
a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(t)
$$

is the given differential equation. The method of variation of parameters will help us find a particular solution to the above equation.
(1) Start by guessing a particular solution

$$
y_{P}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)
$$

where y_{1} and y_{2} are the two solutions to the homogeneous equation

$$
a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

(2) Solve for v_{1}^{\prime} and v_{2}^{\prime} satisfying the system of equations

$$
\begin{aligned}
& y_{1} v_{1}^{\prime}+y_{2} v_{2}^{\prime}=0 \\
& y_{1}^{\prime} v_{1}^{\prime}+y_{2}^{\prime} v_{2}^{\prime}=\frac{f(t)}{a_{2}}
\end{aligned}
$$

(3) Solve for $v_{1}(t)$ and $v_{2}(t)$ by taking integrals.

2. Problems

Problem 1. Find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}+2 y=t+e^{t}
$$

Solution. Let $f_{1}(t)=t$ and $f_{2}(t)=e^{t}$. We may guess particular solutions

$$
y_{1}(t)=A_{1} t+A_{0}, \quad y_{2}(t)=B e^{t}
$$

Since $f(t)=f_{1}(t)+f_{2}(t)$, the particular solution will be of the form $y_{P}(t)=$ $y_{1}(t)+y_{2}(t)=A_{1} t+A_{0}+B e^{t}$. Substituting into the differential equation

$$
5 B e^{t}+2 A_{1} t+\left(2 A_{1}+2 A_{0}\right)=t+e^{t}
$$

The non-trivial solutions for A_{0}, A_{1}, B are given by

$$
B=\frac{1}{5}, A_{0}=-\frac{1}{2}, A_{1}=\frac{1}{2}
$$

Therefore the final particular solution is

$$
y_{P}(t)=\frac{1}{2}(t-1)+\frac{1}{5} e^{t}
$$

Problem 2. Find a particular solution to

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-t}+3 e^{2 t}
$$

Solution. Note that the auxiliary equation to the corresponding homogeneous equation is given by

$$
r^{2}-3 r+2=0 \Longrightarrow(r-1)(r-2)
$$

Let $f_{1}(t)=e^{-t}$ and $f_{2}(t)=e^{2 t}$. Then we must guess the solutions

$$
y_{1}(t)=A e^{-t}
$$

as -1 is not a root of the auxiliary equation. Substituting, we get

$$
6 A e^{-t}=e^{-t} \Longrightarrow A=\frac{1}{6}
$$

Similarly we have

$$
y_{2}(t)=B t e^{2 t}
$$

as 2 is a simple root of the auxiliary equation. Substituting, we get

$$
B e^{2 t}=e^{2 t} \Longrightarrow B=1
$$

Since $f(t)=f_{1}(t)+3 f_{2}(t)$, the final particular solution is given by

$$
y_{P}(t)=y_{1}(t)+3 y_{2}(t)=\frac{1}{6} e^{-t}+3 t e^{2 t}
$$

Problem 3. Find a particular solution to using variation of parameters

$$
y^{\prime \prime}+y=\tan (t)
$$

Solution. The auxiliary equation is

$$
r^{2}+1=0 \Longrightarrow r= \pm i
$$

Hence the homogeneous solution is given by

$$
y_{H}(t)=c_{1} \cos (t)+c_{2} \sin (t)
$$

We may set $y_{1}=\cos (t)$ and $y_{2}=\sin (t)$. We now need to solve

$$
\begin{aligned}
v_{1}^{\prime} \cos (t)+v_{2}^{\prime} \sin (t) & =0 \\
-v_{1}^{\prime} \sin (t)+v_{2}^{\prime} \cos (t) & =\tan (t)
\end{aligned}
$$

Solving the above system, we get

$$
\begin{aligned}
v_{1}^{\prime} & =-\sin (t) \tan (t)=\cos (t)-\sec (t) \\
v_{2}^{\prime} & =\cos (t) \tan (t)=\sin (t)
\end{aligned}
$$

Integrating, we obtain

$$
\begin{aligned}
& v_{1}(t)=\int \cos (t)-\sec (t) d t=\sin (t)-\ln |\sec (t)+\tan (t)| \\
& v_{2}(t)=\int \sin (t) d t=-\cos (t)
\end{aligned}
$$

Therefore
$y_{P}(t)=(\sin (t)-\ln |\sec (t)+\tan (t)|) \cos (t)-\cos (t) \sin (t)=\ln |\sec (t)+\tan (t)| \cos (t)$.
Problem 4. Find a particular solution to using variation of parameters

$$
y^{\prime \prime}+2 y^{\prime}-3 y=e^{-t} .
$$

Solution. The auxiliary equation is

$$
r^{2}+2 r-3=(r-1)(r+3)=0 \Longrightarrow r=1,-3
$$

Hence the homogeneous solution is given by

$$
y_{H}(t)=c_{1} e^{t}+c_{2} e^{a-3 t}
$$

We may set $y_{1}=e^{t}$ and $y_{2}=e^{-3 t}$. We now need to solve

$$
\begin{aligned}
v_{1}^{\prime} e^{t}+v_{2}^{\prime} e^{-3 t} & =0 \\
v_{1}^{\prime} e^{t}-3 v_{2}^{\prime} e^{-3 t} & =e^{-t}
\end{aligned}
$$

Solving the above system, we get

$$
\begin{aligned}
v_{1}^{\prime} & =\frac{1}{4} e^{-2 t} \\
v_{2}^{\prime} & =-\frac{1}{4} e^{2 t}
\end{aligned}
$$

Integrating, we obtain

$$
\begin{aligned}
& v_{1}(t)=-\frac{1}{8} e^{-2 t} \\
& v_{2}(t)=-\frac{1}{8} e^{2 t}
\end{aligned}
$$

Therefore

$$
y_{P}(t)=-\frac{1}{8} e^{-2 t} e^{t}-\frac{1}{8} e^{2 t} e^{-3 t}=-\frac{1}{4} e^{-t} .
$$

Problem 5. Find a particular solution to using variation of parameters

$$
y^{\prime \prime}+4 y+\sec ^{2}(2 t)
$$

Solution. The auxiliary equation is

$$
r^{2}+4=0 \Longrightarrow r= \pm 2 i
$$

Hence the homogeneous solution is given by

$$
y_{H}(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t) .
$$

We may set $y_{1}=\cos (2 t)$ and $y_{2}=\sin (2 t)$. We now need to solve

$$
\begin{aligned}
v_{1}^{\prime} \cos (2 t)+v_{2}^{\prime} \sin (2 t) & =0 \\
-2 v_{1}^{\prime} \sin (2 t)+2 v_{2}^{\prime} \cos (2 t) & =\sec ^{2}(2 t)
\end{aligned}
$$

Solving the above system, we get

$$
\begin{aligned}
& v_{1}^{\prime}=-\frac{\sin (2 t)}{2 \cos ^{2}(2 t)} \\
& v_{2}^{\prime}=\frac{1}{2} \sec (2 t)
\end{aligned}
$$

Integrating, we obtain

$$
\begin{aligned}
& v_{1}(t)=-\frac{1}{4 \cos (2 t)} \\
& v_{2}(t)=\frac{1}{4} \ln |\sec (2 t)+\tan (2 t)|
\end{aligned}
$$

Therefore

$$
y_{P}(t)=-\frac{1}{4}+\frac{1}{4} \ln |\sec (2 t)+\tan (2 t)| \sin (2 t)
$$

