## JAN. 26 DISCUSSION NOTES

 SECTION B05/B06, MATH 20D (WI21)ABHIK PAL

## 1. Review

1.1. Complex and repeated roots. Recall that to find a solution to a homogeneous linear equation

$$
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} \frac{d y}{d x}+a_{0} y=0
$$

we started with the ansatz $y=e^{r x}$ to get the equation

$$
p(r) e^{r x}=\left(a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}\right) e^{r x}=0 \Longrightarrow p(r)=0 .
$$

Above, the equation $p(r)=0$ is called the auxiliary equation associated to the differential equation.

The case when $p(r)$ is quadratic and has distinct real roots was discussed last week. We treat the remaining two cases below. If $r_{1}, r_{2}$ are roots of the auxiliary equation, then the different cases to determine the general solution are:
(1) If both $r_{1}$ and $r_{2}$ are real and distinct then the general solution is given by

$$
y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x} .
$$

(2) If $r=r_{1}=r_{2}$ then the general solution is given by

$$
y(x)=c_{1} e^{r x}+c_{2} x e^{r x} .
$$

(3) If $r_{1,2}=\alpha+i \beta$ then the general (real) solution is given by

$$
y(x)=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right) .
$$

Remark 1. If $r_{0} \in \mathbf{C}$ is a solution to $p(r)=0$, then $\overline{r_{0}}$ is also a solution. Hence when $p(r)$ is quadratic and $r_{0} \notin \mathbf{R}, r_{0}$ and $\overline{r_{0}}$ are the only solutions. This explains why we only consider the case $r_{1,2}=\alpha \pm i \beta$ when $p(r)=0$ has non-real solutions.
1.2. Method of Undetermined Coefficients. A non-homogeneous equation with constant coefficients is a differential equation of the form

$$
\begin{equation*}
a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{1} \frac{d y}{d t}+a_{0} y=f(t) \tag{1}
\end{equation*}
$$

Any solution to (1) is of the form $y(t)=y_{P}(t)+y_{H}(t)$ where $y_{P}(t)$ is any function that satisfies

$$
a_{n} \frac{d^{n} y_{P}}{d t^{n}}+a_{n-1} \frac{d^{n-1} y_{P}}{d t^{n-1}}+\cdots+a_{1} \frac{d y_{P}}{d t}+a_{0} y_{P}=f(t)
$$

and $y_{H}$ is the general solution to the homogeneous equation

$$
a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{1} \frac{d y}{d t}+a_{0} y=0
$$

We call $y_{P}$ a particular solution to the in non-homogeneous equation (1).

The method of undetermined coefficients helps us make educated guesses about the particular solutions $y_{P}(t)$. The general strategy is
(1) Make a guess for $y_{P}(t)$ with possibly unknown coefficients.
(2) Substitute guess into (1) to determine values of the coefficients.

The main difficulty lies in finding $y_{P}(t)$. This is usually done by making educated guesses that (obviously) depends on $f(t)$. The sections below summarise the general strategy for determining $y_{P}(t)$ based on various forms of $f(t)$.
1.2.1. "Nice" $f(t)$. If $f(t)$ is "nice enough" we can make the following guesses:

| $f(t)$ | Guess for $y_{P}(t)$ |
| :--- | :--- |
| $C e^{r t}$ | $A e^{r t}$ |
| $C \sin (\lambda t)$ | $A \sin (\lambda t)+B \cos (\lambda t)$ |
| $C \cos (\lambda t)$ | $A \sin (\lambda t)+B \cos (\lambda t)$ |
| $a_{m} t^{m}+\cdots+a_{1} t+a_{0}$ | $A_{m} t^{m}+\cdots+A_{1} t+A_{0}$ |

Above $A_{m}, \cdots, A_{0}, A, B$ are all constants that need to determined afterwards.
If we further assume that the given differential equation has order two then we can treat two more forms of $f(t)$.
1.2.2. $f(t)=C t^{m} e^{r t}$. Guess

$$
y_{P}(t)=t^{s}\left(A_{m} t^{m}+\cdots+A_{1} t+A_{0}\right) e^{r t}
$$

where the value of $s$ depends on relationship between the associated auxiliary equation and $r$ :
(1) $s=0$ if $r$ is not a root,
(2) $s=1$ if $r$ is a simple root, and
(3) $s=2$ if $r$ is a double root.
1.2.3. $f(t)=C t^{m} e^{\alpha t} \cos (\beta t)$ or $f(t)=C t^{m} e^{\alpha t} \sin (\beta t)$. Guess
$y_{P}(t)=t^{s}\left(A_{m} t^{m}+\cdots+A_{1} t+A_{0}\right) e^{\alpha t} \cos (\beta t)+t^{s}\left(B_{m} t^{m}+\cdots+B_{1} t+B_{0}\right) e^{\alpha t} \sin (\beta t)$.
where the value of $s$ depends on the relationship between the associated auxiliary equation and $\alpha+i \beta$ :
(1) $s=0$ if $\alpha+i \beta$ is not a root, and
(2) $s=1$ if $\alpha+i \beta$ is a root.

Remark 2. You can remember the various conditions on s by noting that it is just the multiplicities of $r$ and $\alpha+i \beta$ as roots of the associated auxiliary equation.

## 2. Problems

Problem 1. Find the general solution to the equation $y^{\prime \prime}+4 y^{\prime}+13 y=0$
Solution. Starting with the ansatz $y=e^{r t}$, we see that the auxiliary equation is

$$
r^{2}+4 r+13=0
$$

Completing the square, we see that $r_{1,2}=-2 \pm 3 i$. So the general solution is given by

$$
y(t)=e^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right) .
$$

Problem 2. Find the solution to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0 ; \quad y(0)=1, y^{\prime}(0)=-1 .
$$

Solution. Starting with the ansatz $y=e^{r t}$, we see that te auxiliary equation is

$$
r^{2}-2 r+5=0 .
$$

Using the quadratic formula

$$
r_{1,2}=1 \pm 2 i .
$$

So the general solution is

$$
y=e^{t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right) .
$$

Plugging in the initial conditions, we get

$$
\begin{aligned}
& y(0)=1 \Longrightarrow c_{1}=1 \\
& y^{\prime}(0)=1 \Longrightarrow c_{1}+2 c_{2}=-1 \Longrightarrow c_{2}=-1 \text {. }
\end{aligned}
$$

Hence the solution is given by

$$
y=e^{t}(\cos (2 t)-\sin (2 t))
$$

Problem 3. Find the solution to the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+4 y=0 ; \quad y(0)=1, y^{\prime}(0)=1
$$

Solution. Using the ansatz $y=e^{r t}$, we see that the auxiliary equation is

$$
r^{2}-4 r+4=(r-2)^{2}=0
$$

Since $r=2$ is a double root, the general solution is given by

$$
y=e^{2 t}\left(c_{1} x+c_{2}\right)
$$

Plugging in the initial conditions

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =1
\end{aligned} c_{2}=1.2 c_{2}+c_{1}=1 \Longrightarrow c_{1}=-1 .
$$

So the solution is $y=(1-t) e^{2 t}$.
Problem 4. Find the general solution to the equation $y^{\prime \prime}+4 y=t^{2}$.
Solution. The auxiliary equation is

$$
r^{2}+4=0 \Longrightarrow r_{1,2}= \pm 2 i .
$$

So $y_{H}(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)$. Since $f(t)=t^{2}$, we must look for a particular solution of the form $y_{P}(t)=A t^{2}+B t+C$. Substituting into the differential equation, we get

$$
2 A+4 \cdot\left(A t^{2}+B t+C\right)=4 A t^{2}+4 B t+(2 A+C)=t^{2}
$$

Matching the coefficients, we have $A=\frac{1}{4}, B=0, C=-\frac{1}{2}$. Hence the general solution is given by

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{1}{4} t^{2}-\frac{1}{2} .
$$

Problem 5. Find the general solution to the differential equation

$$
y^{\prime \prime}+y^{\prime}+y=2 t e^{t}
$$

Solution. Starting with the ansatz $y=e^{r t}$ for the homogeneous system, we get

$$
r^{2}+r+1=0 \Longrightarrow r_{1,2}=\frac{1}{2} \pm i \frac{\sqrt{3}}{2}
$$

Hence

$$
y_{H}(t)=e^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3}}{2} t\right)+c_{2} \sin \left(\frac{\sqrt{3}}{2} t\right)\right)
$$

Since $2 t e^{t}=2 \cdot t^{1} e^{1 \cdot t}$, we start with the guess

$$
y_{P}(t)=(A t+B) e^{t}=A t e^{t}+B e^{t}
$$

Computing derivatives, we get

$$
\begin{aligned}
y_{P}^{\prime}(t) & =A e^{t}+(A t+B) e^{t}=A e^{t}(t+1)+B e^{t} \\
y_{P}^{\prime \prime}(t) & =A e^{t}(t+2)+B e^{t}
\end{aligned}
$$

Substituting into the original equation, we get

$$
2 t e^{t}=3 A t e^{t}+(3 A+3 B) e^{t} \Longrightarrow A=\frac{2}{3}, B=-\frac{2}{3}
$$

Hence the general solution is given by

$$
y(t)=e^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3}}{2} t\right)+c_{2} \sin \left(\frac{\sqrt{3}}{2} t\right)\right)+\frac{2}{3} e^{t}(t-1)
$$

Problem 6. Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=2 \cos (t) ; \quad y(0)=0, y^{\prime}(0)=1
$$

Solution. Starting with the ansatz $y=e^{r t}$ for the homogeneous system, we get

$$
r^{2}+4=0 \Longrightarrow r= \pm 2 i \Longrightarrow y_{H}(t)=c_{1} \cos (2 t)+c_{2} \cos (2 t) .
$$

Since $f(t)=2 \cos (t)$, we can guess

$$
y_{P}(t)=A \cos (t)+B \sin (t)
$$

Substituting into the differential equation

$$
[-A \cos (t)-B \sin (t)]+4[A \cos (t)+B \sin (t)]=3 A \cos (t)+3 B \sin (t)=2 \cos (t)
$$

Hence we must have $A=\frac{2}{3}$ and $B=0$.
The general solution is given by

$$
y(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{2}{3} \cos (t)
$$

Plugging in the initial conditions

$$
\begin{array}{r}
y(0)=0 \Longrightarrow c_{1}+\frac{2}{3}=0 \Longrightarrow c_{1}=-\frac{2}{3} \\
y^{\prime}(0)=1 \Longrightarrow 2 c_{2}=1 \Longrightarrow c_{2}=\frac{1}{2} .
\end{array}
$$

