
JAN. 19 DISCUSSION NOTES
SECTION B05/B06, MATH 20D (WI21)

ABHIK PAL

1. Review

1.1. Exact Equations. Recall that the total differential of a function F (x, y),
written dF , is the differential form

dF =
∂F

∂x
dx+

∂F

∂y
dy.

An arbitrary differential form

M(x, y)dx+N(x, y)dy

is called exact if there exists F (x, y) such that

M(x, y) =
∂F

∂x
and N(x, y) =

∂F

∂y
.

In other words, an exact differential form is the total differential of some function
F . In this case, a differential equation of the form

M(x, y)dx+N(x, y)dy = 0

is called an exact differential equation and has solution F (x, y) = c for some
constant c.

1.2. Testing for exactness. The differential equation

M(x, y)dx+N(x, y)dy = 0

is exact if and only if
∂M

∂y
=
∂N

∂x
.

�

Caution 1. Make sure you differentiate with the correct variable while testing
for exactness. To avoid making this mistake, remember that the coefficient of dx
gets differentiated with respect to y and the coefficient of dy gets differentiated with
respect to x.

1.3. Solving Exact Equations. Suppose M dx+N dy = 0 is exact.
1



2 ABHIK PAL

1.3.1. Method I.
(1) Integrate with respect to x to get

F (x, y) =

∫
M(x, y)dx+ g(y).

(2) Differentiate both sides of the equation in step (1) with respect to y and
solve for g′(y) to obtain

g′(y) = N(x, y)− ∂

∂y

[∫
M(x, y)dx

]
.

(3) Obtain g(y) up to a constant by integrating g′(y).
(4) Obtain the implicit solution F (x, y) = C by plugging in g(y) into the equa-

tion in step (1).

1.3.2. Method II.
(1) Compute integrals with respect to x and y to obtain∫

M(x, y)dx+ g(y) and
∫
N(x, y)dy + h(x).

Above, g(y) and h(x) are some functions of y and x respectively.
(2) Obtain F (x, y) by merging the results of the two integrals by writing

c = F (x, y) =(common terms that appear on both integrals)
+ (terms that only depend on x)
+ (terms that only depend on y)

This step is clarified in the example below.

Example 1. Suppose we need to solve the exact equation

(1− 2xy)dx+ (4y3 − x2)dy = 0.

Then ∫
M(x, y)dx = x− x2y + g(y),∫
N(x, y)dy = y4 − x2y + h(x).

We note that −x2y is the term common to both integrals, x is the only term that
depends on x and y4 is the only term that depends on y. Hence we must have
h(x) = x and g(y) = y4. So the implicit solution is

F (x, y) = −x2y + x+ y4 = C.

1.4. Integrating Factors. Suppose the equation

M(x, y)dx+N(x, y)dy = 0

is not exact. If there exists a function µ(x, y) such that the equation

µ(x, y)M(x, y)dx+ µ(x, y)N(x, y)dy = 0

is exact, then µ(x, y) is called an integrating factor.

Remark 1. Recall that we encountered integrating factors while solving linear first
order equations. In the case of linear first order ODEs, the integrating factors
helped us convert the given equation to a separable equation.
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1.5. Finding (Special) Integrating Factors. Let

M(x, y)dx+N(x, y)dy = 0

be a non-exact equation. To simplify some of the terms, we use the notation

My =
∂M

∂y
and Nx =

∂N

∂x
.

Note that non-exactness just means My 6= Nx soMy−Nx 6= 0. We check two cases
and compute the integrating factor accordingly:

(1) If the term
My −Nx

N
only depends on x, then let

µ(x, y) = µ(x) = exp

[∫ (
My −Nx

N

)
dx

]
(2) If the term

My −Nx

−M
=
Nx −My

M
only depends on y, then let

µ(x, y) = µ(y) = exp

[∫ (
My −Nx

−M

)
dy

]
�

Caution 2. If a non-exact equation had a solution, then an integrating factor
must exist. This does not mean, however, that they are easy to compute! The above
method does not help us find integrating factors in all cases.

1.6. Homogeneous Linear Equations. Recall that a linear differential equation
is a differential equation of the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = F (x).

The equation above is called homogeneous is F (x) = 0. The equation above has
constant coefficients if each ak(x) is a constant function. Hence a homogeneous
differential equation with constant coefficients has the form

(1) an
dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y = 0

where a0, · · · , an are real numbers.

Fact 1. If y1(x), · · · , yn(x) are solutions to a homogeneous equation and c1, . . . , cn
are arbitrary constants then y(x) = C1y1(x) + · · ·Cnyn(x) is also a solution.

1.7. Solutions to Homogeneous Linear Equations with Constant Coeffi-
cients. Start with an guess1 y = erx. Plugging this into (1), we get

0 = anr
nerx + an−1r

n−1erx + · · ·+ a1re
rx + a0e

rx

= (anr
n + an−1r

n−1 + · · ·+ a1r + a0)e
rx.

Since erx 6= 0 for all x, the above equation is only zero at the roots r1, . . . , rk
of the polynomial above. A general solution to (1) is found by adding solutions
corresponding to various ri.

1Some books often call this initial guess an Ansatz.
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2. Problems

Problem 1. Check whether the following equations are exact. Find the general
solution for those which are exact.

1. 3x2ydx+ (x3 + y3)dy = 0

2. (x2 − y2)dx+ (y2 − x2)dy = 0

3. veuvdu+ ueuvdv = 0

4. 2xydx− x2dy = 0

Solution.
1. We have M(x, y) = 3x2y, N(x, y) = (x3 + y3). Computing the partials we

get
∂M

∂y
= 3x2,

∂N

∂x
= 3x2.

Hence the equation is exact. We can now integrate to get∫
M(x, y)dx = yx3 + g(y)∫
N(x, y)dy = yx3 +

y4

4
+ h(x).

Combining, we get the solution

F (x, y) = yx3 +
y4

4
= C.

2. We have M(x, y) = x2 − y2, N(x, y) = y2 − x2. Computing the partials we
get

∂M

∂y
= −2y, ∂N

∂x
= −2x.

Hence the equation is not exact.
3. We have M(u, v) = veuv, N(u, v) = ueuv. Computing the partials, we get

∂M

∂v
= uveuv + euv,

∂N

∂u
= uveuv + euv.

Hence the equation is exact. We can now integrate (using substitution)∫
M(u, v)du =

∫
veuvdu = euv + g(v)∫

N(u, v)dv =

∫
ueuvdv = euv + h(u).

Combining, we get the solution

F (u, v) = euv = C.

4. We have M(x, y) = 2xy, N(x, y) = −x2dy. Computing the partials we get

∂M

∂y
= 2x,

∂N

∂x
= −2x2.

Hence the equation is not exact.
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Problem 2. Find a general solution to the differential equation

dy

dx
+

x2y

x3 + y
= 0.

Solution. Rearranging the equation, we obtain

(x2y)dx+ (x3 + y)dy = 0.

So M(x, y) = x2y and N(x, y) = x3 + y. Computing the partials
∂M

∂y
= x2,

∂N

∂x
= 3x2

we conclude that the given equation is not exact. We compute
∂M
∂y −

∂N
∂x

−M(x, y)
=
x2 − 3x2

−x2y
=

2

y

to get a function that depends just on y. So we can compute the integrating factor

µ(x, y) = µ(y) = exp

[∫
2

y
dy

]
= exp[2 ln(y)] = y2.

Multiplying both sides of the original equation by µ(x, y), we get an exact equation

(x2y3)dx+ (x3y2 + y3)dy = 0.

Now, ∫
x2y3dx =

x3y3

3
+ g(y),

∫
x3y2 + y3dy =

x3y3

3
+
y4

4
.

Combining these terms, we see that

F (x, y) =
1

3
x3y3 +

1

4
y4 = C

is a general solution.

Problem 3. Find a general solution to the differential equation

y′′ − 2y′ − 3y = 0

Solution. We note that the given equation is a second order homogeneous equation.
Hence start with the ansatz y = erx, then

(r2 − 2r − 3)erx = 0 =⇒ (r + 1)(r − 3) = 0 =⇒ r = −1, r = 3.

Hence a general solution is given by

y(x) = C1e
−x + C2e

3x

where C1 and C2 are constants.

Problem 4. Find a second-order linear homogeneous ODE whose general solution
is y = c1e

x + c2e
2x

Solution. An arbitrary second-order homogeneous ODE looks like

a2y
′′ + a1y

′ + a0y = 0.

If we start with an ansatz y = erx, we get

(a2r
2 + a1r + a0)e

rx = 0.
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From the general solution we conclude that r = 1 and r = 2 must be roots of the
quadratic. Hence

a2r
2 + a1r + a0 = (r − 1)(r − 2) = r2 − 3r + 2.

Hence a2 = 1, a1 = −3, a0 = 2 and the correct differential equation is

y′′ − 3y′ + 2y = 0.

Problem 5. Find the solution to the differential equation

y′′ + 4y′ + 3y = 0

such that y(0) = 1, y′(0) = − 5
3 .

Solution. The given equation is second-order linear homogeneous so we start with
the ansatz y = erx. Then

r2 + 4r + 3 = 0 =⇒ (r + 3)(r + 1) = 0 =⇒ r = −3, r = −1.
Hence the general solution is given by

y = c1e
−x + c2e

−3x.

Using the initial conditions, we get

c1 + c2 = 1

−c1 − 3c2 = −5

3
.

Solving for c1, c2 we get c1 = 2
3 and c2 = 1

3 . Hence the solution is given by

y(x) =
2

3
e−x +

1

3
e−3x


