JAN. 12 DISCUSSION NOTES

SECTION B05/B06, MATH 20D (WI21)

ABHIK PAL

1. Review

1.1. Classification of Differential Equations. An ordinary differential equation (ODE) involves derivatives with respect to a single independent variable. A partial differential equation (PDE) involves partial derivatives with respect to more than one independent variable. The order of a differential equation is the order of the highest-order derivative present in the equation. In a linear differential equation the dependent variable and its derivatives appear as additive combinations of their first powers. Hence a linear differential equation can be written as

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=F(x) \tag{1}
\end{equation*}
$$

where $a_{n}(x), \ldots, a_{0}(x)$, and $F(x)$ depend only on x. If a differential equation is not linear it is non-linear.

Caution 1. Note that in a linear equation, the restriction is only made on the dependent variable! Above, the $a_{k}(x)$ are still permitted to be arbitrary functions of x. However y and its derivatives must appear as linear terms.
1.2. Separable Equations. A first-order equation is separable if it can be written in the form

$$
\frac{d y}{d x}=g(x) p(y)
$$

1.3. Solving Separable Equations. Suppose we are given the (separable) differential equation

$$
\frac{d y}{d x}=g(x) p(y)
$$

We solve this using the following steps:
(1) "Separate" the x and y parts by multiplying both sides by $d x$ and dividing by $p(y)$ to obtain

$$
\frac{1}{p(y)} d y=g(x) d x
$$

(2) Integrate both sides to get

$$
P(y)=\int \frac{1}{p(y)} d y=\int g(x) d x=G(x)+C
$$

The equation $P(y)=G(x)+C$ gives an implicit solution to the differential equation. We may now solve for y in terms of x to get an explicit solution.
1.4. Linear Equations. Using the notation from (1), we can write a linear firstorder equation as

$$
\begin{equation*}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=F(x) . \tag{2}
\end{equation*}
$$

Here $a_{1}(x), a_{0}(x)$, and $F(x)$ depend only on x. We may divide by $a_{1}(x)$ to obtain the standard form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{3}
\end{equation*}
$$

of (2). Above,

$$
P(x)=\frac{a_{0}(x)}{a_{1}(x)} \quad \text { and } \quad Q(x)=\frac{F(x)}{a_{1}(x)}
$$

1.5. Solving Linear Equations. We use the following steps to solve a first order linear equation:
(1) First bring the equation in standard form as in (3).
(2) Calculate the integrating factor using the formula

$$
\mu(x)=\exp \left[\int P(x) d x\right]=e^{\int P(x) d x}
$$

(3) Multiply both sides of (3) by $\mu(x)$ to obtain

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) \frac{d y}{d x}+P(x) \mu(x) y=\mu(x) Q(x)
$$

(4) Integrate both sides and then divide by $\mu(x)$ to get the general solution

$$
\mu(x) y=\int \mu(x) Q(x) d x+C \Longrightarrow y=\frac{1}{\mu(x)}\left[\int \mu(x) Q(x) d x+C\right]
$$

Caution 2. Make sure you don't forget to take the exponential while computing the integrating factor!

2. Problems

Problem 1. Identify the independent variables, dependent variable, and the order of the given equation. Classify the equation as ODE/PDE and linear/non-linear.

1. $i \hbar \frac{d}{d t} \Psi=H \Psi$
2. $\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi-\frac{\partial^{2}}{\partial x^{2}} \psi-\frac{\partial^{2}}{\partial y^{2}} \psi-\frac{\partial^{2}}{\partial z^{2}} \psi+\frac{m^{2} c^{2}}{\hbar^{2}} \psi=0$
3. $\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}=r V-r S \frac{\partial V}{\partial S}$
4. $\frac{d^{2} \theta}{d t^{2}}+\sin (\theta)=0$
5. $\frac{\partial^{2}}{\partial x^{2}} u+\frac{\partial^{2}}{\partial y^{2}} u+e^{\lambda u}=0$

Solution.

1. The variable t is independent and Ψ is dependent. The given equation is a first-order linear ODE.
2. The variables t, x, y, z are independent and ψ is dependent. The given equation is a second-order linear PDE.
3. The variables t, S are independent and V is dependent. The given equation is a second-order linear PDE.
4. The variable t is independent and θ is independent. The given equation is a second-order non-linear ODE.
5. The variables x and y are independent and u is dependent. The given equation is a second-order non-linear PDE.

Problem 2. Suppose A and B are constants, show that $y=A \sin (2 x)+B \cos (2 x)$ solves the differential equation $y^{\prime \prime}=-4 y$.
Solution. Note that it suffices to compute $y^{\prime \prime}+4 y$.

$$
\begin{aligned}
y^{\prime \prime}+4 y & =\frac{d}{d x}\left[\frac{d}{d x}(A \sin (2 x)+B \cos (2 x))\right]+4 A \sin (2 x)+4 B \cos (2 x) \\
& =\frac{d}{d x}[2 A \cos (2 x)-2 B \sin (2 x)]+4 A \sin (2 x)+4 B \cos (2 x) \\
& =-4 A \sin (2 x)-4 B \cos (2 x)+4 A \sin (2 x)+4 B \cos (2 x) \\
& =0
\end{aligned}
$$

Hence, the given value of y indeed solves the required equation.
Problem 3. Solve the differential equation $x^{\prime}=2+2 x+t+t x$
Solution. Factoring the right hand side as $(2+t)(1+x)$, we see that the differential equation is separable. We can now compute

$$
\begin{aligned}
\frac{d x}{d t}=(2+t)(1+x) & \Longrightarrow \frac{1}{1+x} d x=(2+t) d t \\
& \Longrightarrow \int \frac{1}{1+x} d x=\int 2+t d t \\
& \Longrightarrow \ln (|x+1|)=2 t+\frac{t^{2}}{2}+C \\
& \Longrightarrow x=K \exp \left[2 t+\frac{t^{2}}{2}\right]-1
\end{aligned}
$$

Above $K=e^{C}$ is a constant.
Problem 4. Solve the differential equation $\left(x^{2}+1\right) y^{\prime}=x y$.
Solution. Rewriting, we get

$$
\frac{d y}{d x}=\frac{x}{x^{2}+1} \cdot y
$$

Since the equation is separable, we can now compute

$$
\frac{d y}{y}=\frac{x}{x^{2}+1} d x \Longrightarrow \int \frac{1}{y} d y=\int \frac{x}{x^{2}+1} d x \Longrightarrow \ln (|y|)=\frac{1}{2} \ln \left(x^{2}+1\right)+C
$$

where C is the constant of integration. To compute the integral with respect to x, we use u substitution with $u=x^{2}+1$. We can now obtain the explicit solution by taking the exponential on both sides. Hence

$$
y=K \sqrt{x^{2}+1}
$$

where $K=e^{C}$ is a constant.
Problem 5. Find an implicit solution to the initial value problem

$$
y^{\prime}=\frac{\sin (x)}{\sin (y)}, \quad y(0)=\frac{\pi}{2}
$$

Solution. Since the given differential equation is separable, we get

$$
\frac{d y}{d x}=\frac{\sin (x)}{\sin (y)} \Longrightarrow \sin (y) d y=\sin (x) d x \Longrightarrow-\cos (y)=-\cos (x)+C
$$

From the given initial condition,

$$
\cos (\pi / 2)=\cos (0)-C \Longrightarrow C=1
$$

Hence an implicit solution is $\cos (y)=\cos (x)-1$.
Problem 6. When a raindrop falls, it increases in size. Suppose its mass at time t is given by $m(t)$. The rate of growth of the mass is $k m(t)$ for some $k>0$. When we apply Newton's Law of Motion to the raindrop, we get $(m v)^{\prime}=m g$, where v is the velocity of the raindrop (directed downward) and g is the acceleration due to gravity. The terminal velocity of the raindrop is $\lim _{t \rightarrow \infty} v(t)$. Find an expression of the terminal velocity in terms of g and k. You may assume that the raindrop begins at rest.
Solution. We first need to compute $v(t)$. Since the raindrop begins at rest, we have the initial condition $v(0)=0$. Moreover, we are given

$$
\frac{d m}{d t}=k m \quad \text { and } \quad(m v)^{\prime}=m v^{\prime}+v m^{\prime}=g m
$$

Hence

$$
m v^{\prime}+v(k m)=g m \Longrightarrow v^{\prime}+v k=g
$$

Since the resulting differential equation is separable, we can compute $v(t)$.

$$
\begin{aligned}
\frac{d v}{d t}=g-k v & \Longrightarrow \int \frac{1}{g-k v} d v=\int d t \\
& \Longrightarrow-\frac{1}{k} \ln |g-k v|=t+C \\
& \Longrightarrow v=\frac{g}{k}-\frac{A}{k} e^{-k t}
\end{aligned}
$$

Using the initial conditions, we get $A=g$ and hence

$$
v(t)=\left(1-e^{-k t}\right) \frac{g}{k}
$$

Now the terminal velocity can be computed by taking the limit $t \rightarrow \infty$. Since $k>0$, we get

$$
\lim _{t \rightarrow \infty} v(t)=\lim _{t \rightarrow \infty}\left(1-e^{-k t}\right) \frac{g}{k}=\left(1-\lim _{t \rightarrow \infty} e^{-k t}\right) \frac{g}{k}=\frac{g}{k}
$$

Problem 7. Solve the differential equation

$$
\frac{d y}{d x}+3 x^{2} y=6 x^{2}
$$

Solution. Sinc the given equation is a first order linear equation and is already in the standard form, we can directly compute the integrating factor

$$
\mu(x)=\exp \left[\int 3 x^{2} d x\right]=\exp \left(x^{3}\right)
$$

Multiplying both sides by $\mu(x)$, we see that

$$
\frac{d}{d x}\left[\exp \left(x^{3}\right) y\right]=6 x^{2} \exp \left(x^{3}\right)
$$

Using $u=x^{3}$, integration yields

$$
\exp \left(x^{3}\right) y=\int 6 x^{2} \exp \left(x^{3}\right) d x=\int 2 \exp (u) d u=2 \exp \left(x^{3}\right)+C
$$

Hence

$$
y=2+C \exp \left(-x^{3}\right)
$$

is a solution to the given differential equation.
Problem 8. Solve the differential equation

$$
y^{\prime}+y=\sin \left(e^{x}\right)
$$

Solution. Since the given equation is a first order equation and is already in the standard form, we can directly compute the integrating factor

$$
\mu(x)=\exp \left[\int 1 d x\right]=e^{x} .
$$

Multiplying both sides by $\mu(x)$, we see that

$$
\frac{d}{d x}\left[e^{x} y\right]=e^{x} \sin \left(e^{x}\right)
$$

Using $u=e^{x}$, integration yields

$$
e^{x} y=\int e^{x} \sin \left(e^{x}\right) d x=\int \sin (u) d u=-\cos \left(e^{x}\right)+C
$$

Hence

$$
y=C e^{-x}-e^{-x} \cos \left(e^{x}\right)
$$

is a solution to the given different differential equation.
Problem 9. Find a solution to the initial value problem

$$
x y^{\prime}+y=x \cos \left(x^{2}\right), \quad y(\sqrt{\pi})=1
$$

Solution. Since the given equation is a first order linear equation, we first divide by x to bring the equation in standard form

$$
\frac{d y}{d x}+\frac{1}{x} \cdot y=\cos \left(x^{2}\right)
$$

The integrating factor is given by

$$
\mu(x)=\exp \left[\int \frac{1}{x} d x\right]=\exp (\ln (|x|))=x .
$$

Multiplying both sides by $\mu(x)$, we see that

$$
\frac{d}{d x}[x y]=x \cos \left(x^{2}\right)
$$

Using $u=x^{2}$, integration yields

$$
x y=\int x \cos \left(x^{2}\right) d x=\frac{1}{2} \int \cos (u) d u=\frac{1}{2} \sin \left(x^{2}\right)+C .
$$

Hence

$$
y=\frac{\sin \left(x^{2}\right)}{2 x}+\frac{C}{x}
$$

Using the initial conditions,

$$
1=\frac{\sin (\pi)}{2 \sqrt{\pi}}+\frac{C}{\sqrt{\pi}} \Longrightarrow C=\sqrt{\pi}
$$

Hence a solution is given by

$$
y=\frac{\sin \left(x^{2}\right)}{2 x}+\frac{\sqrt{\pi}}{x} .
$$

Problem 10. Find a solution to the initial value problem

$$
x y^{\prime}=y+x^{2} \sin (x), \quad y(\pi)=0
$$

Solution. Since the given equation is a first order linear equation, we first bring it in the standard form

$$
y^{\prime}-\frac{1}{x} \cdot y=x \sin (x)
$$

The integrating factor is given by

$$
\mu(x)=\exp \left[-\int \frac{1}{x} d x\right]=\exp (-\ln (|x|))=\frac{1}{x}
$$

Multiplying both sides by $\mu(x)$, we see that

$$
\frac{d}{d x}\left[\frac{y}{x}\right]=\sin (x)
$$

Integration yields

$$
\frac{y}{x}=\int \sin (x) d x=-\cos (x)+C
$$

Hence

$$
y=C x-x \cos (x)
$$

Using the initial conditions,

$$
0=C \pi-\pi \cos (\pi) \Longrightarrow C=-1
$$

Hence a solution is given by

$$
y=-x-x \cos (x)
$$

