0.1 Basic definitions of Lie algebra

Remark 0.1 (Irreducible \neq Indecomposable when G is infinite). Recall in finite group representation, every representation is a direct sum of irreducible representations (prop 1.5 in Fulton-Harris). However, it is not true in the infinite case. (note: decomposable \Longrightarrow reducible works for all (linear) representation).

Consider a representation of $G=\mathbb{C}$ by $\rho: G \rightarrow G L_{2}(V)=G L_{2}(\mathbb{C})$ by $\rho(r) \mapsto\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)$. Then, for $V_{0}=\binom{a}{0},\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right) V_{0}=\binom{a}{0}$. So since V_{0} is G-invariant, V_{0} is a subrepresentation of V, however, V is indecomposable because if V is decomposable, $V=W_{0} \oplus W_{1}$ for some G-invariant linear subspace W_{0}, W_{1} of V. There exists λ such that $\rho(g) u=\lambda u$ for all $u=\left(u_{0}, u_{1}\right) \in W_{0}, g \in G$, (because $G=\mathbb{C}$). Then, it implies that $u_{0}+r_{g} u_{1}=\lambda u_{0}, u_{1}=\lambda u_{1} \Longrightarrow \lambda=1$ and $r_{g} u_{1}=0$ for all $g \in G$. Therefore, $u_{1}=0$. So, $W_{0}=\mathbb{C}(1,0)$. Similarly, we get $W_{1}=\mathbb{C}(1,0)$, which is a contradiction.

However, if a representation is semisimple, which is a concept introduced later, gives complete reducibility (indecomposable \Longleftrightarrow irreducible) to it (by Weyl's theorem).

Definition 0.2 (Lie algebra). A Lie algebra is a vector space \mathfrak{g} with an extra operation called bracket $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ such that following property holds: for all $X, Y, Z \in \mathfrak{g}$,
(i) $[\cdot, \cdot]$ is bilinear,
(ii) (alternating property) $[X, X]=0$ for all $X \in \mathfrak{g}(\Longleftrightarrow[X, Y]=-[Y, X])$, and
(iii) (Jacobi identity) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$.

Definition 0.3 (Lie subalgebra). Let \mathfrak{g} be a Lie algebra. A linear subspace $\mathfrak{h} \subseteq \mathfrak{g}$ is a Lie subalgebra if for all $X, Y \in \mathfrak{h},[X, Y] \in \mathfrak{h}$.

Definition 0.4 (Lie algebra homomorphism). Let $\mathfrak{g}, \mathfrak{h}$ be Lie algebras. A linear map $f: \mathfrak{g} \rightarrow \mathfrak{h}$ is a Lie algebra homomorphism if it preserves Lie bracket i.e., $f([X, Y])=[f(X), f(Y)]$ for all $X, Y \in \mathfrak{g}$.

Definition 0.5 (g-module). Let \mathfrak{g} be a Lie algebra. A vector space V over a field F, endowed with an operation $L \times V \rightarrow V,(x, v) \mapsto x v$ is called an \mathfrak{g}-module if for all $a, b \in F, x, y \in \mathfrak{g}, v, w \in V$:
(a) $(a x+b y) v=a(x v)+b(y v)$,
(b) $x(a v+b w)=a(x v)+b(x w)$, and
(c) $[x, y] v=x y v-y x v$.

Definition 0.6 (Adjoint representation of a Lie group). Let G be a Lie group, $T_{e} G$ be a tangent space of G at the identity e. Let $\Psi: G \rightarrow \operatorname{Aut}(G), g \mapsto \Psi_{g}$ where $\Psi_{g}: G \rightarrow G, h \mapsto g h g^{-1}$. Let Ad : $G \rightarrow$ $\operatorname{Aut}\left(T_{e} G\right), g \mapsto \operatorname{Ad}(g)$ where $\operatorname{Ad}(g)=\left(d \Psi_{g}\right)_{e}: T_{e} G \rightarrow T_{e} G$. Ad is indeed a Lie group homomorphism.

From this definition, we define a adjoint representation for a Lie algebra associated to Lie group by taking a differential of $A d$. So we define:

Definition 0.7 (Adjoint representation of a Lie algebra). Let $a d: \mathfrak{g}=T_{e} G \rightarrow \operatorname{End}\left(T_{e} G\right), X \mapsto d(A d)_{e}(X)$. We define $[X, Y]=\operatorname{ad}(X)(Y)$.

Proposition 0.8 (Bracket operation in $\mathfrak{g l}(n)$ is commutator). As we saw in Stillwell's book, when a Lie group $G=G L_{n}(\mathbb{R})$, by looking at tangent vector at the identity $e \in G$,

$$
\begin{align*}
{[X, Y] } & =\left.\frac{d}{d t}\right|_{t=0}(\operatorname{Ad}(\gamma(t))(Y) \tag{1}\\
& =\left.\frac{d}{d t}\right|_{t=0} \gamma(t) Y \gamma(t)^{-1} \tag{2}\\
& =\gamma^{\prime}(0) Y \gamma(0)+\gamma(0) Y\left(-\gamma(0)^{-1} \gamma^{\prime}(0)\right) \tag{3}\\
& =X Y-Y X \tag{4}
\end{align*}
$$

where $\gamma:[0,1] \rightarrow G$ is a (differentiable) path such that $\gamma(0)=e, \gamma^{\prime}(0)=X$.

Definition 0.9 (Adjoint Representation). Let V be a \mathfrak{g}-module. A map ad : $\mathfrak{g} \rightarrow \mathfrak{g l}(V)=\operatorname{End}(\mathfrak{g}), X \rightarrow$ $\operatorname{ad}(X)$ where $\operatorname{ad}(X): \mathfrak{g} \rightarrow \mathfrak{g}$ by $\operatorname{ad}(X)(Y)=[X, Y]$ is called adjoint representation. Indeed, ad is a Lie algebra homomorphism (linearity is easy), i.e.,

$$
\begin{align*}
\operatorname{ad}([X, Y])(Z) & =[[X, Y], Z] \tag{5}\\
& =-[Z,[X, Y]] \quad(\because \text { alternating property }) \tag{6}\\
& =[X,[Y, v]]+[Y,[Z, X]] \quad(\because \text { Jacobi's identity }) \tag{7}\\
& =[X,[Y, Z]]-[Y,[X, Z]] \tag{8}\\
& =\operatorname{ad}(X)(\operatorname{ad}(Y)(Z))-\operatorname{ad}(Y)(\operatorname{ad}(X)(Z)) \tag{9}\\
& =[\operatorname{ad}(X), \operatorname{ad}(Y)](Z) \tag{10}
\end{align*}
$$

since this is for all $Z \in \mathfrak{g}, \operatorname{ad}([X, Y])=[\operatorname{ad}(X), \operatorname{ad}(Y)]$.
Definition 0.10 (Ideal of a Lie algebra). A Lie subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ of Lie algebra \mathfrak{g} is said to be an ideal if $[X, Y] \in \mathfrak{h}$ for all $X \in \mathfrak{h}, Y \in \mathfrak{g}$.
Definition 0.11 (Quotient algebra). Let \mathfrak{g} be a Lie algebra, I be an ideal of \mathfrak{g}. A quotient algebra of $a \mathfrak{g} / I$ is a quotient (vector) space of \mathfrak{g} with Lie bracket $[\bar{X}, \bar{Y}]:=\overline{[X, Y]}$.

This is operation is indeed well-defined because for $X \sim X^{\prime}, Y \sim Y^{\prime}, X^{\prime}=X+u, Y^{\prime}=Y+v$ for some $u, v \in I$, then

$$
\begin{align*}
{\left[\bar{X}^{\prime}, \bar{Y}^{\prime}\right]=\overline{\left[X^{\prime}, Y^{\prime}\right]} } & =\overline{[X+u, Y+v]} \tag{11}\\
& =\overline{[X+u, Y]+[X+u, v]} \tag{12}\\
& =\overline{[X, Y]+[u, Y]+[X, v]+[u, v]} \tag{13}\\
& =\overline{[X, Y]}=[\bar{X}, \bar{Y}] . \tag{14}
\end{align*}
$$

Definition 0.12 (Center of Lie algebra). The center $Z(\mathfrak{g})$ of a Lie algebra \mathfrak{g} is a subspace of \mathfrak{g} such that for all $X \in Z(\mathfrak{g}),[X, Y]=0$ for all $Y \in \mathfrak{g}$.

Definition 0.13 (Simple Lie algebra). A Lie algebra \mathfrak{g} is simple if $\operatorname{dim} \mathfrak{g}>1$ (as vector space) and it contains no nontrivial ideals, i.e., only ideals of \mathfrak{g} are $\{0\}$ and \mathfrak{g}.

Definition 0.14 (Lower central series). Let \mathfrak{g} be a Lie algebra. A lower central series of subalgebras $D_{k} \mathfrak{g}$ is defined inductively by $D_{1} \mathfrak{g}=[\mathfrak{g}, \mathfrak{g}]$ and $D_{k} \mathfrak{g}=\left[\mathfrak{g}, D_{k-1} \mathfrak{g}\right]$.

Remark 0.15. $D_{k} \mathfrak{g}$ is indeed an ideal.
Proof. Since for all $h \in D_{1} \mathfrak{g}, h=[X, Y]$ for some $X, Y \in \mathfrak{g}$, and for all $Z \in \mathfrak{g},[h, Z]=[[X, Y], Z]=$ $-[Z,[X, Y]]=[X,[Y, Z]]+[Y,[Z, X]] \in[\mathfrak{g}, \mathfrak{g}]=D_{1} \mathfrak{g}$. Suppose $D_{k} \mathfrak{g}$ is an ideal. Then, for all $h \in D_{k+1} \mathfrak{g}$, $h=[X, Y]$ for some $X \in \mathfrak{g}, Y \in D_{k} \mathfrak{g}$, and $[h, Z]=[[X, Y], Z]=-[Z,[X, Y]]=[X,[Y, Z]]+[Y,[Z, X]] \in$ $\left[\mathfrak{g}, D_{k} \mathfrak{g}\right]=D_{k+1} \mathfrak{g}$. By induction, $D_{k} \mathfrak{g}$ is an ideal for all $k \in \mathbb{Z}_{\geq 1}$.

Definition 0.16 (Derived series). Let \mathfrak{g} be a Lie algebra. A derived series of subalgebras $D^{k} \mathfrak{g}$ is defined inductively by $D^{1} \mathfrak{g}=[\mathfrak{g}, \mathfrak{g}]$ and $D^{k} \mathfrak{g}=\left[D^{k-1} \mathfrak{g}, D^{k-1} \mathfrak{g}\right]$.
Remark 0.17. $D^{k} \mathfrak{g}$ is indeed an ideal.
Proof. Base case is the same as lower central series. Suppose $D^{k} \mathfrak{g}$ is an ideal. Then for all $h \in D^{k+1}$, $h=[X, Y]$ for some $X, Y \in D^{k} \mathfrak{g}$. For all $Z \in \mathfrak{g},[h, Z]=[[X, Y], Z]=-[Z,[X, Y]]=[X,[Y, Z]]+[Y,[Z, X]] \in$ $\left[D^{k} \mathfrak{g}, D^{k} \mathfrak{g}\right]=D^{k+1} \mathfrak{g}$. Therefore, by induction, $D^{k} \mathfrak{g}$ is an ideal for all $k \in \mathbb{Z}_{\geq 1}$.

Definition 0.18 (Nilpotent). A Lie algebra \mathfrak{g} is said to be nilpotent if $D_{k} \mathfrak{g}=0$ for some k.
Definition 0.19 (Solvable). A Lie algebra \mathfrak{g} is said to be solvable if $D^{k} \mathfrak{g}=0$ for some k.

Example 0.20 (Solvable Lie algebra). An abelian Lie algebra \mathfrak{g} i.e., $[X, Y]=0$ for all $X, Y \in \mathfrak{g}$ is a solvable Lie algebra.
Remark 0.21 (Simple implies NOT solvable). If a Lie algebra \mathfrak{g} is simple, then \mathfrak{g} is not solvable.
Assume it is solvable. Then, since $D^{k} \mathfrak{g}$ is an ideal, it has to be $D^{k} \mathfrak{g}=0$ for some k. Since derived series is a descending chain, $k=1$. And this implies that \mathfrak{g} is abelian, which contradicts to dim $\mathfrak{g}>1$.

Example 0.22 (Nilpotent Lie algebra). Strictly upper triangular matrix.
Proposition 0.23 (Equivalent condition to solvability). A Lie algebra \mathfrak{g} is solvable if and only if \mathfrak{g} has a sequence of Lie subalgebras $\mathfrak{g}=\mathfrak{g}_{0} \supset \mathfrak{g}_{1} \supset \cdots \supset \mathfrak{g}_{k}=\{0\}$ such that \mathfrak{g}_{i+1} is an ideal in \mathfrak{g}_{i} and $\mathfrak{g}_{i} / \mathfrak{g}_{i+1}$ is abelian.

Proof. (\Longrightarrow) Since \mathfrak{g} is solvable, there exists $D^{k} \mathfrak{g}=0$. So by taking $\mathfrak{g}_{k}=D^{k}$ and $\mathfrak{g}_{0}=\mathfrak{g}$, we are done.
(\Longleftarrow) Since $\mathfrak{g}_{0} / \mathfrak{g}_{1}$ is abelian, for all $h \in D^{1} \mathfrak{g}, h=[X, Y]$ for some $X, Y \in \mathfrak{g}$. Since $[X, Y] \in \mathfrak{g}_{0}$ and $[X, Y]=0$ in $\mathfrak{g}_{0} / \mathfrak{g}_{1},[X, Y] \in \mathfrak{g}_{1}$. Suppose $D^{k} \mathfrak{g} \subseteq \mathfrak{g}_{k}$. For all $h \in D^{k+1} \mathfrak{g}$, there exist $X, Y \in D^{k} \mathfrak{g} \subseteq \mathfrak{g}_{k}$ s.t. $h=[X, Y]$. Since $[X, Y] \in\}_{k}$ because \mathfrak{g}_{k} is an ideal, and also $[X, Y]=0$ because $\mathfrak{g}_{k} / \mathfrak{g}_{k+1}$ is abelian, it implies that $[X, Y] \in \mathfrak{g}_{k+1}$.

Proposition 0.24. Let L be a Lie algebra. Then, (a) If L is solvable, then so are all every subalgebra $h \in L$ and homomorphic images of L.
(b) If I is a solvable ideal of L such that L / I is solvable, then L is solvable.
(c) If I, J are solvable ideals of L, then so is $I+J$.

Proof. (a) Since $h \subseteq L$, its derived series $D^{k} h \subseteq D^{k} L=0$ for some k.
If a Lie algebra homomorphism $f: L \rightarrow \operatorname{Im} f$, then $0=f\left(D^{k} L\right)=D^{k} f(L)=D^{k} \operatorname{Im} f$.
(b) Since L / I is solvable, $D^{k} L / I=0$ for some k. Let $\pi: L \rightarrow L / I$ be a quotient map. Then $f\left(D^{k} L / I\right)=$ $0 \Longrightarrow D^{k} L \subseteq I$. If $D^{m} I=0$ for some m, then $D^{m} D^{k} L=D^{m+k} L \subseteq D^{m} I=0$.
(c) Let $f: I \rightarrow I+J / J$ be a Lie group epimorphism (surjective homomorphism). By isomorphism theorem, $I /(I \cap J) \cong(I+J) / J$. By (a), $(I+J) / J$ is solvable and since J is solvable, by $(\mathrm{b}), I+J$ is solvable.

Definition 0.25 (Semisimple). A Lie algebra \mathfrak{g} is said to be semisimple if \mathfrak{g} has no nonzero solvable ideals.
Remark 0.26. Let V be finite-dimensional vector space over a field F. If $X \in \operatorname{End}(V), x$ is semisimple if the roots of the characteristic polynomial over F are all distinct $\Longleftrightarrow X$ is diagonalizable.

Definition 0.27 (Radical of a Lie algebra). Let \mathfrak{g} be a Lie algebra. Then the radical $\operatorname{Rad}(\mathfrak{g})$ of \mathfrak{g} is the maximal solvable ideal.
Remark 0.28. $\operatorname{Rad}(\mathfrak{g})$ is unique.
Proof. If I, J are maximal solvable ideals, then $I+J$ is also solvable and $I \subseteq I+J$. By maximality of I, $J \subseteq I$. Similarly, $I \subseteq J$. Therefore, $I=J$.

Proposition 0.29. Simple \Longrightarrow semisimple.
Proof. If a Lie algebra \mathfrak{g} is simple, then it has no nontrivial ideal, therefore, $\operatorname{Rad}(\mathfrak{g})=0 \operatorname{or} \operatorname{Rad}(\mathfrak{g})=\mathfrak{g}$. If $\operatorname{Rad}(\mathfrak{g})=\mathfrak{g}$, then it contradicts to remark 0.21. Thus, $\operatorname{Rad}(\mathfrak{g})=0$.

Proposition 0.30. $\mathfrak{g} / \operatorname{Rad}(\mathfrak{g})$ is semisimple.
Proof. Since $\operatorname{Rad}(\mathfrak{g})$ is maximal solvable ideal, for every solvable ideal $I, I \subseteq \operatorname{Rad}(\mathfrak{g})$ because $I+\operatorname{Rad}(\mathfrak{g})=$ $\operatorname{Rad}(\mathfrak{g})$. And by quotient map $\pi: \mathfrak{g} \rightarrow \mathfrak{g} / \operatorname{Rad}(\mathfrak{g}), \pi(I)=0$. Therefore, $\mathfrak{g} / \operatorname{Rad}(\mathfrak{g})$ has no nonzero solvable ideal.

A short exact sequence

$$
0 \rightarrow \operatorname{Rad}(\mathfrak{g}) \rightarrow \mathfrak{g} \rightarrow \mathfrak{g} / \operatorname{Rad}(\mathfrak{g}) \rightarrow 0
$$

is true for all Lie algebra \mathfrak{g}. Therefore, it is extremely important to understand solvable ideals and semisimple Lie algebras ($\mathfrak{g} / \operatorname{Rad}$).

$0.2 \quad \mathfrak{s l}_{2} \mathbb{C}$

Slogan: $\mathfrak{s l}_{2} \mathbb{C}$ plays a crucial role for understanding a general semisimple Lie algebra because any semisimple Lie algebra contains copies of $\mathfrak{s l}_{2} \mathbb{C}$ as a Lie subalgebra. Also, surprisingly, a representation of any semisimple Lie algebra can be well-understood through $\mathfrak{s l}_{2} \mathbb{C}$ and a finite group called Weyl group, so it is important to first look at the representation of $\mathfrak{s l}_{2} \mathbb{C}$,

Proposition 0.31. $\mathfrak{s l}_{n} \mathbb{C}$ has trace zero.
Proof. Since $S L_{n}(\mathbb{C})=\left\{A \in G L_{n}(\mathbb{C}) \mid \operatorname{det} A=1\right\}$, for all $X \in \mathfrak{s l}_{n} \mathbb{C}$, consider a path $\gamma:[0,1] \rightarrow S L_{n}(\mathbb{C})$ by $\gamma(t)=e^{t X}$ then $\gamma(0)=1, \gamma^{\prime}(0)=X$. Then, since det $e^{t X}=1$ for all $t, 1=\mathrm{e}^{\operatorname{trtX}}=\mathrm{e}^{\mathrm{trX}}$. Therefore, $\operatorname{tr} X=0$.

Proposition 0.32. $\mathfrak{s l}_{2}(\mathbb{C})$ is simple, thus semisimple.
Proof. Since $\mathfrak{s l}_{2} \mathbb{C}$ has trace zero, every element of $\mathfrak{s l}_{2} \mathbb{C}$ is of the form $\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)$. Therefore, $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, $X=$ $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $Y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ is a basis for $\mathfrak{s l}_{2} \mathbb{C}$. and $[H, X]=H X-X H=2 X,[H, Y]=-2 Y,[X, Y]=H$. Let I be a nonzero ideal of $\mathfrak{s l}_{2}(\mathbb{C})$. Then, there exists an element in I of the form $a X+b Y+c H \neq 0$ for some $a, b, c \in \mathbb{C}$. Then, $\operatorname{ad}(X)^{2}(a X+b Y+c H)=\operatorname{ad}(X)(b H-2 c X)=-2 b X$ and $\operatorname{ad}(Y)^{2}(a X+b Y+c H)=$ $\operatorname{ad}(Y)(-a H+2 c Y)=-2 a Y$. Therefore, $X, Y \in I \quad \Longrightarrow \quad[X, Y]=H \in I \quad \Longrightarrow \quad I=\mathfrak{s l}_{2} \mathbb{C}$. Thus, $\mathfrak{s l}_{2} \mathbb{C}$ is simple.

Theorem 0.33 (Jordan-Chevalley decomposition). Let V be a finite dimensional vector space over \mathbb{C}, $x \in \operatorname{End}(V)$. There exist unique $x_{s}, x_{n} \in \operatorname{End}(V)$ satisfying the conditions: $x=x_{s}+x_{n}$, where x_{s} is semisimple and x_{n} is nilpotent and $x=x_{n}+x_{s}$.

Theorem 0.34 (Weyl's theorem). Let $\phi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ be a finite dimensional representation of a semisimple Lie algebra. Then ϕ is completely reducible.

Theorem 0.35 (Preservation of Jordan Decomposition). Let \mathfrak{g} be a semisimple Lie algebra. For any element $X \in \mathfrak{g}$, there exist X_{s} and $X_{n} \in \mathfrak{g}$ such that for any representation $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ we have

$$
\rho(X)_{s}=\rho\left(X_{s}\right) \text { and } \rho(X)_{n}=\rho\left(X_{n}\right)
$$

By the preceding theorem, since H is a diagonal matrix, the action of H on V is diagonalizable, i.e., $\rho(H)$ is semisimple (diagonalizable) where ρ is a representation. Therefore, an irreducible representation V of $\mathfrak{s l}_{2} \mathbb{C}$ can be written as a direct sum of eigenspaces of the representation of H i.e., $V=\oplus_{\alpha \in \Lambda} V_{\alpha}$ where Λ is the set of eigenvalues of $\rho(H)$. Then $H(v)=\alpha v$ for all $v \in V_{\alpha}$.
(More precisely, if $\rho: \mathfrak{s l}_{2} \mathbb{C} \rightarrow G L(V)$ is a adjoint representation, then $\Lambda=\{\alpha \in \mathbb{C} \mid \rho(H)(v)=\alpha v\}$.)
Proposition 0.36 (Fundamental Calculation of $\left.\mathfrak{s l}_{2} \mathbb{C}\right) . H(v)=\alpha v, H(X(v))=(\alpha+2) X(v), H(Y(v))=$ $(\alpha-2) X(v)$.

Proof. Since

$$
\begin{align*}
H(X(v)) & =[H, X](v)+X(H(v)) \tag{15}\\
& =2 X(v)+X(\alpha v) \tag{16}\\
& =(\alpha+2) X(v) \tag{17}
\end{align*}
$$

this implies that if v is an eigenvector for H with eigenvalue α, then $X(v)$ is also eigenvector for H, with eigenvalue $\alpha+2$. In other words, $X: V_{\alpha} \rightarrow V_{\alpha+2}$.

Moreover, since

$$
\begin{align*}
H(Y(v)) & =[H, Y](v)+Y(H(v)) \tag{18}\\
& =-2 Y(v)+Y(\alpha v) \tag{19}\\
& =(\alpha-2) Y(v) \tag{20}
\end{align*}
$$

so $Y: V_{\alpha} \rightarrow V_{\alpha-2}$.
Now that both $X(v)$ and $Y(v)$ are eigenvector for H with eigenvalues $(\alpha+2),(\alpha-2)$ respectively. So X sends eigenvector $v \in V_{\alpha}$ to $X(v) \in V_{\alpha+2}, Y(v) \in V_{\alpha-2}$.

We call that each α a weight and V_{α} a weight space. If a weight m_{0} has $V_{m_{0}} \neq 0$ and $V_{m_{0}+2}=0$, then m_{0} is called highest weight (this is well-defined because $\operatorname{dim} V<\infty$) and elements of $V_{m_{0}}$ are called maximal vector. The result can be interpreted as this picture:

Lemma 0.37. Let $\mathfrak{g}=\mathfrak{s l}_{2} \mathbb{C}$, V be irreducible \mathfrak{g}-module. Choose a maximal vector $v_{0} \in V_{\alpha}$; set $v_{-1}=0$, $v_{i}=$ $\frac{1}{i!} Y^{i} v_{0}(i \geq 0)$. Then the following statements hold:
(a) $H v_{i}=(\alpha-2 i) v_{i}$,
(b) $Y v_{i}=(i+1) v_{i+1}$, and
(c) $X v_{i}=(\alpha-i+1) v_{i-1}$.

Proof. (a) Since $Y^{i} v_{0} \in V_{\alpha-2 i}$, so for $v_{i} \in V_{\alpha-2 i}$, $H v_{i}=(\alpha-2 i) v_{i}$. (b) $Y v_{i}=\frac{1}{i!} Y^{i+1} v_{0}=(i+1) \frac{1}{i+1!} Y^{i+1} v_{0}=$ $(i+1) v_{i+1}$.
(c) Use induction. When $i=0$ is clear because $X v_{0}=0$ and $v_{-1}=0$ by definition. Suppose (c) is true up to $i-1$, then

$$
\begin{aligned}
i X v_{i} & =i X Y(1 / i!) Y^{i-1} v_{0}=X Y v_{i-1} \\
& =[X, Y] v_{i-1}+Y X v_{i-1} \\
& =H v_{i-1}+Y X v_{i-1} \\
& =(\alpha-2(i-1)) v_{i-1}+(\alpha-i+2) Y v_{i-2} \\
& =(\alpha-2 i+2)) v_{i-1}+(i-1)(\alpha-i+2) v_{i-1} \\
& =i(\alpha-i+1) v_{i-1}
\end{aligned}
$$

Corollary 0.38. The highest weight α of a given representation is an integer.
Proof. Following the same notation with the preceding lemma, let m be the smallest integer such that $v_{m} \neq 0$ and $v_{m+1}=0$. When $i=m+1$, since by (c) $0=X v_{i}=(\alpha-i+1) v_{i-1}=(\alpha-m) v_{m}$ and $v_{m} \neq 0, \alpha=m$.

Theorem 0.39. Let V be an irreducible $(m+1)$ dimensional $\mathfrak{g}=\mathfrak{s l}_{2} \mathbb{C}$ module and m_{0} be the highest weight. Then,
(a) $V=\oplus_{i=0}^{m} V_{m-2 i}=V_{m} \oplus V_{m-2} \oplus \cdots \oplus V_{-m+2} \oplus V_{-m}$, in particular, $m=m_{0}$.
(b) For each weight $\mu, \operatorname{dim} V_{\mu}=1$ if $V_{\mu} \neq 0$.
(c) The matrix representations of H, X, Y with regard to the basis $\left\langle v_{0}, v_{1}, \ldots, v_{m_{0}}\right\rangle$ are as follows:

$$
H=\left[\begin{array}{cccc}
m & 0 & \cdots & 0 \\
0 & m-2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & -m
\end{array}\right], X=\left[\begin{array}{ccccc}
0 & m & 0 & \cdots & 0 \\
0 & 0 & m-1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right], Y=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 2 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & 0 & 0 \\
0 & 0 & \cdots & m & 0
\end{array}\right]
$$

Let $\phi_{m}: \operatorname{End}(V) \rightarrow M_{m+1}(\mathbb{C})$ be this matrix representation.
Proof. (a) Since by using the same notation as preceding lemma, $\left\langle v_{0}, v_{1}, \ldots, v_{m_{0}}\right\rangle \neq 0$ is a linear subspace of V and in fact, a \mathfrak{g}-invariant subspace because by the preceding lemma. Because also $v_{0}, v_{1}, \ldots, v_{m_{0}}$ are eigenvector that has different eigenvalues, $v_{0}, v_{1}, \ldots, v_{m_{0}}$ are linearly independent. By irreducibility of V, we have $V=\left\langle v_{0}, v_{1}, \ldots, v_{m_{0}}\right\rangle$. This implies that $m_{0}+1=\operatorname{dim}\left\langle v_{0}, v_{1}, \ldots, v_{m_{0}}\right\rangle=\operatorname{dim} V=m+1 \Longrightarrow m_{0}=m$. Since $v_{i} \in V_{m_{0}-2 i}$ by lemma, $V=\left\langle v_{0}, v_{1}, \ldots, v_{m_{0}}\right\rangle=\oplus_{i=1}^{m}\left\langle v_{i}\right\rangle \subseteq \oplus_{i=1}^{m} V_{m-2 i}=V$. And this tower of inclusion also implies that $V_{m-2 i}$ is generated by a single element $\left\langle v_{i}\right\rangle$, which proves (b).
(c) follows from the preceding lemma.

Corollary 0.40. Let $\mathfrak{g}=\mathfrak{s l}_{2} \mathbb{C}$, V be any finite dimensional \mathfrak{g}-module. Then by Weyl's theorem $V=\oplus_{i=1}^{r} W_{i}$ for some $r \in \mathbb{Z}_{\geq 0}$ and W_{i} 's are irreducible \mathfrak{g}-invariant subspace of V. Then $r=\operatorname{dim} V_{0}+\operatorname{dim} V_{1}$ where V_{0}, V_{1} are the eigenspaces of eigenvalue 0 and 1 respectively. In particular, V is irreducible $\Longleftrightarrow \operatorname{dim} V_{0}+\operatorname{dim} V_{1}=$ 1. Therefore, ϕ_{m} is irreducible representation.

Proof. Let $\phi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ be a representation. By the preceding theorem, for all $1 \leq i \leq r$, there exists $m \in \mathbb{Z}_{\geq 0}$ such that $\phi_{\mid W_{i}} \equiv \phi_{m}$. In W_{i}, since $\phi(H)=\left[\begin{array}{cccc}m & 0 & \cdots & 0 \\ 0 & m-2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -m\end{array}\right]$, the eigenvalue of $\phi(H)$ are
$m, m-2, \ldots,-m$. Therefore, for each W_{i}, we have either 0 or 1 as an eigenvalue and by the preceding theorem, its dimension is 1 . Therefore, $\operatorname{dim}\left(W_{i}\right)_{0}+\operatorname{dim}\left(W_{i}\right)_{1}=1$. Thus,

$$
\begin{align*}
r & =\sum_{i=1}^{r} \operatorname{dim}\left(W_{i}\right)_{0}+\operatorname{dim}\left(W_{i}\right)_{1} \tag{21}\\
& =\operatorname{dim} \oplus_{i=1}^{r}\left(W_{i}\right)_{0}+\operatorname{dim} \oplus_{i=1}^{r}\left(W_{i}\right)_{1} \tag{22}\\
& =\operatorname{dim} V_{0}+\operatorname{dim} V_{1} . \tag{23}
\end{align*}
$$

Remark 0.41. By the corollary, there exists unique representation $V^{(n)}$ for each $n \in \mathbb{Z}_{\geq 0} . V^{(n)}$ is ($n+1$)dimensional vector space with eigenvalues $n, n-2, \ldots,-n+2,-n$. And this is indeed irreducible representation as we shall see later.

So an irreducible representation V of $\mathfrak{s l}_{2} \mathbb{C}$ is completely determined by its highest weight.

$$
\{\text { representation } V\} \Longleftrightarrow\{\text { highest weight } m\} .
$$

Remark 0.42. Any representation V of $\mathfrak{s l}_{2} \mathbb{C}$ such that the eigenvalues of H all have the same parity (odd or even) with multiplicity one \Longrightarrow irreducible by the preceding corollary.
Example 0.43. A trivial representation $V^{(0)}$ has $\operatorname{dim} V^{(0)}=1$. So it is irreducible by the corollary.
Example 0.44. Let V be the standard representation of \mathbb{C}^{2} i.e., $V=\left\{\left.\binom{a}{b} \in \mathbb{C}^{2} \right\rvert\, a+b=0\right\}=\left\{\left.\binom{a}{-a} \right\rvert\, a \in\right.$ $\mathbb{C}\}$. Then, for standard basis $x=(1,0), y=(0,1), H(x)=x, H(y)=-y$ by matrix calculation. Therefore, $V=\mathbb{C} \cdot x \oplus \mathbb{C} \cdot y=V_{-1} \oplus V_{1}$. Thus, V is irreducible and in fact, $V=V^{(1)}$.

Example 0.45. With the same notation with the previous example, let $W=\operatorname{Sym}^{2} V=\operatorname{Sym}^{2} \mathbb{C}^{2}=$ $\left\langle x^{2}, x y, y^{2}\right\rangle$. By (8.12) in Fulton-Harris, we have $H(x \cdot x):=x \cdot H(x)+H(x) \cdot x=2 x \cdot x, H(x \cdot y)=$ $x \cdot H(y)+H(x) \cdot y=0, H(y \cdot y)=y H(y)+H(y) y=-2 y \cdot y$. So the representation $W=\mathbb{C} \cdot x^{2} \oplus \mathbb{C} \cdot x y \oplus \mathbb{C} \cdot y^{2}=$ $W_{-2} \oplus W_{0} \oplus W_{2}$. And this representation is indeed irreducible and $\operatorname{Sym}^{2} V=V^{(2)}$.

Theorem 0.46. Any irreducible representation of $\mathfrak{s l}_{2} \mathbb{C}$ is a symmetric power of the standard representation $V \cong \mathbb{C}^{2}$.

Proof. $\mathrm{Sym}^{n} V$ of V has a basis $\left\langle x^{n}, x^{n-1} y, \ldots, y^{n}\right\rangle$ and we have $H\left(x^{n-k} y^{k}\right)=(n-k) \cdot H(x) \cdot x^{n-k-1} y^{k}+$ $k \cdot H(y) \cdot x^{n-k} y^{k-1}=(n-2 k) x^{n-k} y^{k}$. Therefore, eigenvalues of H on $\operatorname{Sym}^{n} V$ are $n, n-2, \ldots,-n$ and by the corollary, $\operatorname{Sym}^{n} V$ is irreducible $\Longrightarrow V^{(n)}=\operatorname{Sym}^{n} V$.

