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0.1 Basic definitions of Lie algebra

Remark 0.1 (Irreducible # Indecomposable when G is infinite). Recall in finite group representation, every
representation is a direct sum of irreducible representations (prop 1.5 in Fulton-Harris). However, it is not
true in the infinite case. (note: decomposable = reducible works for all (linear) representation).

Consider a representation of G = C by p : G — GL2(V) = GLy(C) by p(r) — <(1) 7{ . Then, for
Vo = (g), ((1) 7{) Vo = (8) . So since Vy is G-invariant, Vy is a subrepresentation of V', however, V is

indecomposable because if V' is decomposable, V.= Wy @ Wy for some G-invariant linear subspace Wy, Wi
of V. There exists A such that p(g)u = I for all u = (ug,u1) € Wo,g € G, (because G = C). Then, it
implies that uo + rgui = Aug,u1 = Auy = A =1 and rgu; = 0 for all g € G. Therefore, u; = 0. So,
Wo = C(1,0). Similarly, we get Wy = C(1,0), which is a contradiction.

However, if a representation is semisimple, which is a concept introduced later, gives complete reducibility
(indecomposable <= irreducible) to it (by Weyl’s theorem,).

Definition 0.2 (Lie algebra). A Lie algebra is a wvector space g with an extra operation called bracket
[,]] : g x g = g such that following property holds: for oll XY, Z € g,

(i) [,"] is bilinear,

(ii) (alternating property) [X,X] =0 forall X € g (<= [X,Y] = —[Y, X]), and

(i11) (Jacobi identity) [X,[Y, Z]| +[Y,[Z, X]] + [Z,[X,Y]] = 0.

Definition 0.3 (Lie subalgebra). Let g be a Lie algebra. A linear subspace b C g is a Lie subalgebra if for
adl XY €, [X,Y] €h.

Definition 0.4 (Lie algebra homomorphism). Let g,b be Lie algebras. A linear map f : g — b is a Lie
algebra homomorphism if it preserves Lie bracket i.e., f([X,Y]) = [f(X), f(Y)] for all X, Y € g.

Definition 0.5 (g-module). Let g be a Lie algebra. A vector space V over a field F, endowed with an
operation L x V' — V. (x,v) — zv is called an g-module if for all a,b € F,z,y € g,v,w € V:

(a) (ax + by)v = a(zv) + b(yv),

(b) z(av + bw) = a(zv) + b(azw), and

(c) [z,y]v = zyv — yav.

Definition 0.6 (Adjoint representation of a Lie group). Let G be a Lie group, T.G be a tangent space

of G at the identity e. Let ¥ : G — Aut(@),g — ¥, where ¥, : G — G,h — ghg™'. Let Ad : G —
Aut(T.G), g — Ad(g) where Ad(g) = (d¥,). : T.G — T.G. Ad is indeed a Lie group homomorphism.

From this definition, we define a adjoint representation for a Lie algebra associated to Lie group by taking
a differential of Ad. So we define:

Definition 0.7 (Adjoint representation of a Lie algebra). Letad: g = T.G — End(T.G), X — d(Ad).(X).
We define [X,Y] = ad(X)(Y).

Proposition 0.8 (Bracket operation in gl(n) is commutator). As we saw in Stillwell’s book, when a Lie
group G = GL,(R), by looking at tangent vector at the identity e € G,

XY= 21 e ) (1)
t=0

=2 G (2)

= Y (OY4(0) +1(0)Y (~(0)+/(0) Q

=XY-YX (4)

where v : [0,1] = G is a (differentiable) path such that v(0) = e,~7'(0) = X.
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Definition 0.9 (Adjoint Representation). Let V' be a g-module. A map ad : g — gl(V) = End(g), X —
ad(X) where ad(X) : g — g by ad(X)(Y) = [X,Y] is called adjoint representation. Indeed, ad is a Lie
algebra homomorphism (linearity is easy), i.e.,

2d([X,Y))(Z) = [[X, Y], 7] (5)
=—[Z,[X,Y]] (. alternating property) (6)

= [X,[YV,v]] + [V, [Z, X]] (. Jacobi’s identity) (7)

=X, [Y. Z]] - [V, [X, Z]] (8)

= ad(X)(ad(Y)(2)) — ad(Y)(ad(X)(2)) (9)

= [ad(X), ad(Y)](2) (10)

since this is for all Z € g, ad([X,Y]) = [ad(X), ad(Y)].

Definition 0.10 (Ideal of a Lie algebra). A Lie subalgebra b C g of Lie algebra g is said to be an ideal if
[X,Y]eh forall X €h,Y €g.

Definition 0.11 (Quotient algebra). Let g be a Lie algebra, I be an ideal of g. A quotient algebra of a g/1
is a quotient (vector) space of g with Lie bracket [X,Y] = [X,Y].

This is operation is indeed well-defined because for X ~ X'V ~Y', X' = X +u,Y' =Y + v for some
u,v € I, then

(X, Y] =[XY]=[X+uY +1] (11)
=[X+uY]+[X +u,v] (12)

=[X, Y]+ [u, Y]+ [X,v] + [u, v] (13)

=[X,Y]=[X,Y]. (14)

Definition 0.12 (Center of Lie algebra). The center Z(g) of a Lie algebra g is a subspace of g such that
forall X € Z(g), [X,Y] =0 for allY € g.

Definition 0.13 (Simple Lie algebra). A Lie algebra g is simple if dimg > 1 (as vector space) and it
contains no nontrivial ideals, i.e., only ideals of g are {0} and g.

Definition 0.14 (Lower central series). Let g be a Lie algebra. A lower central series of subalgebras Dyg is
defined inductively by D1g = [g, 9] and Dig = [g, Dr—19].

Remark 0.15. Dyg is indeed an ideal.

Proof. Since for all h € Dyg, h = [X,Y] for some X,Y € g, and for all Z € g, [h,Z] = [[X,Y],Z] =
—1Z,1X,Y]] = [X,[Y, Z]] + [Y,[Z,X]] € [9,8] = D1g. Suppose Dyg is an ideal. Then, for all h € Dj11g,
h = [X,Y] for some X € g,Y € Dyg, and [h,Z] = [[X,Y],Z] = —[Z,[X,Y]] = [X,[Y, Z]] + [V, [Z,X]] €
[9, Dig] = Dy419. By induction, Dyg is an ideal for all k € Z>1. O

Definition 0.16 (Derived series). Let g be a Lie algebra. A derived series of subalgebras Dkg 18 defined
inductively by D'g = [g,g] and DFg = [D*~1g, D¥~1g].

Remark 0.17. D*g is indeed an ideal.

Proof. Base case is the same as lower central series. Suppose D¥g is an ideal. Then for all h € D*+1,
h=[X,Y]for some X,Y € DFg. Forall Z € g,[h, Z] = [[X,Y], Z] = —[Z,[X, Y]] = [X,[Y, Z]| + [V, [Z, X]] €
[DFg, D¥g] = D**+1g. Therefore, by induction, D¥g is an ideal for all k € Z>. O

Definition 0.18 (Nilpotent). A Lie algebra g is said to be nilpotent if Drg = 0 for some k.
Definition 0.19 (Solvable). A Lie algebra g is said to be solvable if D*g =0 for some k.
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Example 0.20 (Solvable Lie algebra). An abelian Lie algebra g i.e., [X,Y] =0 for all X,Y € g is a solvable
Lie algebra.

Remark 0.21 (Simple implies NOT solvable). If a Lie algebra g is simple, then g is not solvable.
Assume it is solvable. Then, since D*g is an ideal, it has to be D*g = 0 for some k. Since derived series
is a descending chain, k = 1. And this implies that g is abelian, which contradicts to dimg > 1.

Example 0.22 (Nilpotent Lie algebra). Strictly upper triangular matriz.

Proposition 0.23 (Equivalent condition to solvability). A Lie algebra g is solvable if and only if g has a
sequence of Lie subalgebras g = go D g1 D -+ D gr = {0} such that g;v1 is an ideal in g; and g;/gi+1 18
abelian.

Proof. (=) Since g is solvable, there exists D¥g = 0. So by taking g, = D* and gy = g, we are done.

( <= ) Since go/g1 is abelian, for all h € D'g,h = [X,Y] for some X,Y € g. Since [X,Y] € go and
[X,Y] = 01in go/g1, [X,Y] € g1. Suppose D¥g C g. For all h € D*+lg, there exist X,Y € D*g C g,
s.t. h = [X,Y]. Since [X,Y] € }x because g is an ideal, and also [X,Y] = 0 because gi/gi+1 is abelian, it
implies that [X,Y] € giy1- O

Proposition 0.24. Let L be a Lie algebra. Then, (a) If L is solvable, then so are all every subalgebra h € L
and homomorphic images of L.
(b) If I is a solvable ideal of L such that L/I is solvable, then L is solvable.
(¢) If I, J are solvable ideals of L, then so is I + J.
Proof. (a) Since h C L, its derived series D*h C D*L = 0 for some k.

If a Lie algebra homomorphism f : L — Im f, then 0 = f(D*L) = D*f(L) = D*Im f.

(b) Since L/I is solvable, D¥L/I = 0 for some k. Let w: L — L/I be a quotient map. Then f(D*L/I) =
0 = D*L CI.If D™I =0 for some m, then D™D*L = D™*kL C D™] = (.

(¢) Let f: I — I+ J/J be a Lie group epimorphism (surjective homomorphism). By isomorphism
theorem, I/(INJ) = (I +J)/J. By (a), (I + J)/J is solvable and since J is solvable, by (b), I + J is
solvable. O

Definition 0.25 (Semisimple). A Lie algebra g is said to be semisimple if g has no nonzero solvable ideals.

Remark 0.26. Let V be finite-dimensional vector space over a field F. If X € End(V), x is semisimple if
the roots of the characteristic polynomial over F are all distinct <= X 1is diagonalizable.

Definition 0.27 (Radical of a Lie algebra). Let g be a Lie algebra. Then the radical Rad(g) of g is the
mazimal solvable ideal.

Remark 0.28. Rad(g) is unique.

Proof. If I,J are maximal solvable ideals, then I + J is also solvable and I C I 4+ J. By maximality of I,
J C I. Similarly, I C J. Therefore, I = J. [
Proposition 0.29. Simple — semisimple.

Proof. If a Lie algebra g is simple, then it has no nontrivial ideal, therefore, Rad(g) = 0 or Rad(g) = g. If
Rad(g) = g, then it contradicts to remark 0.21. Thus, Rad(g) = 0. O
Proposition 0.30. g/Rad(g) is semisimple.

Proof. Since Rad(g) is maximal solvable ideal, for every solvable ideal I, I C Rad(g) because I + Rad(g) =
Rad(g). And by quotient map 7 : g — g/ Rad(g), 7(I) = 0. Therefore, g/ Rad(g) has no nonzero solvable
ideal. O

A short exact sequence
0 — Rad(g) - g — g/Rad(g) = 0

is true for all Lie algebra g. Therefore, it is extremely important to understand solvable ideals and semisimple
Lie algebras (g/ Rad).
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0.2 5[2@

Slogan: sl5C plays a crucial role for understanding a general semisimple Lie algebra because any semisimple
Lie algebra contains copies of sloC as a Lie subalgebra. Also, surprisingly, a representation of any semisimple
Lie algebra can be well-understood through sl,C and a finite group called Weyl group, so it is important to
first look at the representation of slyC,

Proposition 0.31. s[,,C has trace zero.

Proof. Since SL,(C) = {A € GL,(C) | det A = 1}, for all X € s[,,C, consider a path 7 : [0,1] — SL,(C)
by v(t) = X then 4(0) = 1,7/(0) = X. Then, since dete!® = 1 for all t, 1 = e"*X = ' X Therefore,
tr X =0. O

Proposition 0.32. sly(C) is simple, thus semisimple.

Proof. Since sl C has trace zero, every element of s[5 C is of the form (Z _ba) . Therefore, H = (é _01> X =

(8 (1)) and Y = <§) 8) is a basis for sl,C. and [H,X] = HX — XH =2X,[H,Y] = -2Y,[X,Y] = H.
Let I be a nonzero ideal of sl3(C). Then, there exists an element in I of the form aX + bY + cH # 0 for
some a,b,c € C. Then, ad(X)?(aX +bY + cH) = ad(X)(bH — 2¢X) = —2bX and ad(Y)?(aX +bY +cH) =
ad(Y)(—aH + 2¢Y) = —2aY. Therefore, X, Y € I = [X,Y]|=H € I = I = sl,C. Thus, sLC is
simple. [

Theorem 0.33 (Jordan-Chevalley decomposition). Let V' be a finite dimensional vector space over C,
x € End(V). There exist unique xs,x, € End(V) satisfying the conditions: x = x5 + x,, where x, is
semisimple and x,, is nilpotent and x = x,, + x.

Theorem 0.34 (Weyl’s theorem). Let ¢ : g — gl(V) be a finite dimensional representation of a semisimple
Lie algebra. Then ¢ is completely reducible.

Theorem 0.35 (Preservation of Jordan Decomposition). Let g be a semisimple Lie algebra. For any element
X € g, there exist Xs and X,, € g such that for any representation p : g — gl(V') we have

p(X)s = p(Xs) and p(X)n = p(Xn)

By the preceding theorem, since H is a diagonal matrix, the action of H on V is diagonalizable, i.e.,
p(H) is semisimple (diagonalizable) where p is a representation. Therefore, an irreducible representation V'
of sl5C can be written as a direct sum of eigenspaces of the representation of H i.e., V = @,ecpVy where A
is the set of eigenvalues of p(H). Then H(v) = av for all v € V,.

(More precisely, if p : sloC — GL(V) is a adjoint representation, then A = {a € C | p(H)(v) = av}.)

H(Y (v

) =

Proposition 0.36 (Fundamental Calculation of s,C). H(v) = av, H(X(v)) = (a + 2)X (v),
(a—2)X(v).

Proof. Since

H(X(v)) = [H, X](v) + X(H(v)) (15
= 2X(v) + X (av) (16
= (a+2)X(v), (17

this implies that if v is an eigenvector for H with eigenvalue a, then X (v) is also eigenvector for H, with
eigenvalue a 4 2. In other words, X : Vo, — V0.
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Moreover, since

H(Y (v)) = [H,Y](v) + Y (H(v)) (18)

= —2Y (v) + Y (av) (19)

= (a—2)Y (v), (20)

soY :V, —= V4 0. O]

Now that both X (v) and Y (v) are eigenvector for H with eigenvalues (o + 2), (o — 2) respectively. So X
sends eigenvector v € V,, to X (v) € Vi, Y(v) € V4o
We call that each a a weight and V,, a weight space. If a weight mg has V,,, # 0 and V,,,12 = 0, then
my is called highest weight (this is well-defined because dim V' < co) and elements of V,,, are called maximal
vector. The result can be interpreted as this picture:
Y Y Y Y
O~ N N RN
R —— V

Va+2 #

Va72

Lemma 0.37. Let g = slo,C, V be irreducible g-module. Choose a mazimal vector vg € Vy; setv_1 = 0,v; =
2Y'y(i > 0). Then the following statements hold:

(a) Hv; = (o — 2i);,

(b) Yv; = (i + 1)vi41, and

(c) Xv; = (a—i+ 1)v;_1.

Proof. (a) Since Y'vy € Vi _a;, s0 for v; € Vi _o;, Hv; = (a—2i)v;. (b) Yv; = %Y”lvo = (i+1)i+11!Yi+1v0 =
(Z + 1)1}2‘+1.

(c) Use induction. When ¢ = 0 is clear because Xvg = 0 and v_; = 0 by definition. Suppose (c) is true
up to 7 — 1, then

iXv; =i XY (1/i) Y lug = XYu;_4
=[X,Yvi—1 + Y Xv;1
=Hvj—1 +YXv;1
=(a—=20@—-1)vi-1+(a—i+2)Yv;_o
=(a@—20+2)vi1+ (G —1)(a—i+2)v,—y
=ila—1+ 1)v;—1.

Corollary 0.38. The highest weight o of a given representation is an integer.

Proof. Following the same notation with the preceding lemma, let m be the smallest integer such that v, # 0
and vy, 41 = 0. When ¢ = m+1, since by (¢) 0 = Xv; = (a—i+1)v;—1 = (a—m)v,y, and vy, # 0, o =m. O

Theorem 0.39. Let V' be an irreducible (m+1) dimensional g = sloC module and mq be the highest weight.
Then,

(a) V=8 Vim2i=Vin ®Vip_2 ® - & V_py2 @ V_pp, in particular, m = my.

(b) For each weight p, dimV,, =1 if V,, # 0.
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(¢) The matriz representations of H, X, Y with regard to the basis (vy,v1,...,Vm,) are as follows:

o 0 0 m 0 0 ? 8 88

0 m—2 . 0 0 0 m-1 0 . ‘

H = . . ) . 7X: 7Y': 0o 2
0 0 m 0 0 e 0 1 : 0 0
co - 00 0 0 m 0

Let ¢y : End(V) = Moy, 41(C) be this matriz representation.
Proof. (a) Since by using the same notation as preceding lemma, (vg,v1,...,Um,) 7# 0 is a linear subspace
of V and in fact, a g-invariant subspace because by the preceding lemma. Because also vg,v1, ..., Un, are
eigenvector that has different eigenvalues, vg, v1, ..., vm, are linearly independent. By irreducibility of V', we
have V' = (vg,v1,...,Um,). This implies that mo+ 1 = dim(vg, v1,...,0m,) =dimV =m+1 = mg =m.

Since v; € Vipg—2; by lemma, V = (vg,01,...,0my) = O (v;) C O Vip—o; = V. And this tower of
inclusion also implies that V;,,_o; is generated by a single element (v;), which proves (b).
(c) follows from the preceding lemma. O

Corollary 0.40. Let g = sl,C, V' be any finite dimensional g-module. Then by Weyl’s theorem V = @;_W;
for somer € Z>g and W;’s are irreducible g-invariant subspace of V.. Then r = dim V +dim Vi where Vi, V3
are the eigenspaces of eigenvalue 0 and 1 respectively. In particular, V is irreducible <= dim Vy+dimV; =
1. Therefore, ¢, is irreducible representation.

Proof. Let ¢ : g — gl(V) be a representation. By the preceding theorem, for all 1 < ¢ < r, there exists

m 0 0
0 m—2 --- 0

m € Zxg such that ¢y, = ¢,. In Wy, since ¢(H) = | . . ) . |, the eigenvalue of ¢(H) are
0 0 cee o —m

m,m — 2,...,—m. Therefore, for each W;, we have either 0 or 1 as an eigenvalue and by the preceding

theorem, its dimension is 1. Therefore, dim(W;)g + dim(W;); = 1. Thus,

i=1
= dim &]_,(W;)o + dim &}_, (W;), (22)
= dim Vp + dim V;. (23)
O

Remark 0.41. By the corollary, there exists unique representation V™) for each n € Z>y. V() s (n+1)-
dimensional vector space with eigenvalues n,n — 2,...,—n + 2, —n. And this is indeed irreducible represen-
tation as we shall see later.

So an irreducible representation V' of sloC is completely determined by its highest weight.

{representation V} <= {highest weight m}.

Remark 0.42. Any representation V' of sloC such that the eigenvalues of H all have the same parity (odd
or even) with multiplicity one = irreducible by the preceding corollary.

Example 0.43. A trivial representation V() has dim V' (©) = 1. So it is irreducible by the corollary.

Example 0.44. Let V be the standard representation of C? i.e., V = {(Z) €C?|a+b=0} = {(aa) |a €

C}. Then, for standard basis x = (1,0),y = (0,1), H(z) = x, H(y) = —y by matriz calculation. Therefore,
V=C-z®C-y=V_1®Vi. Thus, V is irreducible and in fact, V=V,



0.2 sl,C Kaoru Otsuka

Example 0.45. With the same notation with the previous ezample, let W = Sym?V = Sym?C? =
(22, 2y,y?). By (8.12) in Fulton-Harris, we have H(z - x) = x - H(z) + H(x) -2 = 22 - o, H(z - y) =
x-H(y)+H(z)y=0,H(yy) =yH(y)+H(y)y = —2y-y. So the representation W = C-22®C-zy®dC-y? =
W_o @& Wy & Way. And this representation is indeed irreducible and Sym?V = V(3.

Theorem 0.46. Any irreducible representation of sloC is a symmetric power of the standard representation

vV =C2.

Proof. Sym™ V of V has a basis (2", 2" 1y, ...,y") and we have H (2" *y*) = (n — k) - H(x) - 2"k~ 1yk +
k- H(y)-x" Fy*=1 = (n — 2k)2"Fy*. Therefore, eigenvalues of H on Sym™V are n,n —2,...,—n and by
the corollary, Sym” V is irreducible = V(") = Sym" V. O



