0.1 Basic definitions of Lie algebra

Remark 0.1 (Irreducible \neq Indecomposable when G is infinite). Recall in finite group representation, every representation is a direct sum of irreducible representations (prop 1.5 in Fulton-Harris). However, it is not true in the infinite case. (note: decomposable \implies reducible works for all (linear) representation).

Consider a representation of $G = \mathbb{C}$ by $\rho : G \to GL_2(V) = GL_2(\mathbb{C})$ by $\rho(r) \mapsto \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}$. Then, for

 $V_0 = \begin{pmatrix} a \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix} V_0 = \begin{pmatrix} a \\ 0 \end{pmatrix}.$ So since V_0 is G-invariant, V_0 is a subrepresentation of V, however, V is indecomposable because if V is decomposable, $V = W_0 \oplus W_1$ for some G-invariant linear subspace W_0, W_1 of V. There exists λ such that $\rho(g)u = \lambda u$ for all $u = (u_0, u_1) \in W_0, g \in G$, (because $G = \mathbb{C}$). Then, it implies that $u_0 + r_g u_1 = \lambda u_0, u_1 = \lambda u_1 \implies \lambda = 1$ and $r_g u_1 = 0$ for all $g \in G$. Therefore, $u_1 = 0$. So, $W_0 = \mathbb{C}(1, 0)$. Similarly, we get $W_1 = \mathbb{C}(1, 0)$, which is a contradiction.

However, if a representation is semisimple, which is a concept introduced later, gives complete reducibility (indecomposable \iff irreducible) to it (by Weyl's theorem).

Definition 0.2 (Lie algebra). A Lie algebra is a vector space \mathfrak{g} with an extra operation called bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ such that following property holds: for all $X, Y, Z \in \mathfrak{g}$, (i) $[\cdot, \cdot]$ is bilinear,

(ii) (alternating property) [X, X] = 0 for all $X \in \mathfrak{g}$ ($\iff [X, Y] = -[Y, X]$), and (iii) (Jacobi identity) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Definition 0.3 (Lie subalgebra). Let \mathfrak{g} be a Lie algebra. A linear subspace $\mathfrak{h} \subseteq \mathfrak{g}$ is a Lie subalgebra if for all $X, Y \in \mathfrak{h}, [X, Y] \in \mathfrak{h}$.

Definition 0.4 (Lie algebra homomorphism). Let $\mathfrak{g}, \mathfrak{h}$ be Lie algebras. A linear map $f : \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism if it preserves Lie bracket i.e., f([X,Y]) = [f(X), f(Y)] for all $X, Y \in \mathfrak{g}$.

Definition 0.5 (g-module). Let \mathfrak{g} be a Lie algebra. A vector space V over a field F, endowed with an operation $L \times V \to V, (x, v) \mapsto xv$ is called an \mathfrak{g} -module if for all $a, b \in F, x, y \in \mathfrak{g}, v, w \in V$: (a) (ax + by)v = a(xv) + b(yv), (b) x(av + bw) = a(xv) + b(xw), and

(c) [x, y]v = xyv - yxv.

Definition 0.6 (Adjoint representation of a Lie group). Let G be a Lie group, T_eG be a tangent space of G at the identity e. Let $\Psi : G \to Aut(G), g \mapsto \Psi_g$ where $\Psi_g : G \to G, h \mapsto ghg^{-1}$. Let $Ad : G \to Aut(T_eG), g \mapsto Ad(g)$ where $Ad(g) = (d\Psi_g)_e : T_eG \to T_eG$. Ad is indeed a Lie group homomorphism.

From this definition, we define a adjoint representation for a Lie algebra associated to Lie group by taking a differential of Ad. So we define:

Definition 0.7 (Adjoint representation of a Lie algebra). Let $ad : \mathfrak{g} = T_eG \to \operatorname{End}(T_eG), X \mapsto d(Ad)_e(X)$. We define [X, Y] = ad(X)(Y).

Proposition 0.8 (Bracket operation in $\mathfrak{gl}(n)$ is commutator). As we saw in Stillwell's book, when a Lie group $G = GL_n(\mathbb{R})$, by looking at tangent vector at the identity $e \in G$,

$$[X,Y] = \frac{d}{dt} \bigg|_{t=0} (\operatorname{Ad}(\gamma(t))(Y)$$
(1)

$$= \frac{d}{dt} \Big|_{t=0} \gamma(t) Y \gamma(t)^{-1} \tag{2}$$

$$= \gamma'(0)Y\gamma(0) + \gamma(0)Y(-\gamma(0)^{-1}\gamma'(0))$$
(3)

$$= XY - YX \tag{4}$$

where $\gamma: [0,1] \to G$ is a (differentiable) path such that $\gamma(0) = e, \gamma'(0) = X$.

=

Definition 0.9 (Adjoint Representation). Let V be a \mathfrak{g} -module. A map $\mathrm{ad} : \mathfrak{g} \to \mathfrak{gl}(V) = \mathrm{End}(\mathfrak{g}), X \to \mathrm{ad}(X)$ where $\mathrm{ad}(X) : \mathfrak{g} \to \mathfrak{g}$ by $\mathrm{ad}(X)(Y) = [X, Y]$ is called adjoint representation. Indeed, ad is a Lie algebra homomorphism (linearity is easy), i.e.,

$$ad([X,Y])(Z) = [[X,Y],Z]$$
 (5)

$$= -[Z, [X, Y]] \quad (\because alternating \ property) \tag{6}$$

$$= [X, [Y, v]] + [Y, [Z, X]] \quad (\because Jacobi's identity)$$

$$\tag{7}$$

$$= [X, [Y, Z]] - [Y, [X, Z]]$$
(8)

$$= \operatorname{ad}(X)(\operatorname{ad}(Y)(Z)) - \operatorname{ad}(Y)(\operatorname{ad}(X)(Z))$$
(9)

$$= [\mathrm{ad}(X), \mathrm{ad}(Y)](Z) \tag{10}$$

since this is for all $Z \in \mathfrak{g}$, $\operatorname{ad}([X, Y]) = [\operatorname{ad}(X), \operatorname{ad}(Y)]$.

Definition 0.10 (Ideal of a Lie algebra). A Lie subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ of Lie algebra \mathfrak{g} is said to be an ideal if $[X, Y] \in \mathfrak{h}$ for all $X \in \mathfrak{h}, Y \in \mathfrak{g}$.

Definition 0.11 (Quotient algebra). Let \mathfrak{g} be a Lie algebra, I be an ideal of \mathfrak{g} . A quotient algebra of a \mathfrak{g}/I is a quotient (vector) space of \mathfrak{g} with Lie bracket $[\bar{X}, \bar{Y}] \coloneqq [X, Y]$.

This is operation is indeed well-defined because for $X \sim X', Y \sim Y', X' = X + u, Y' = Y + v$ for some $u, v \in I$, then

$$[\bar{X}', \bar{Y}'] = \overline{[X', Y']} = \overline{[X + u, Y + v]}$$
(11)

$$=\overline{[X+u,Y]+[X+u,v]}$$
(12)

$$=\overline{[X,Y] + [u,Y] + [X,v] + [u,v]}$$
(13)

$$=\overline{[X,Y]} = [\bar{X},\bar{Y}]. \tag{14}$$

Definition 0.12 (Center of Lie algebra). The center $Z(\mathfrak{g})$ of a Lie algebra \mathfrak{g} is a subspace of \mathfrak{g} such that for all $X \in Z(\mathfrak{g})$, [X, Y] = 0 for all $Y \in \mathfrak{g}$.

Definition 0.13 (Simple Lie algebra). A Lie algebra \mathfrak{g} is simple if dim $\mathfrak{g} > 1$ (as vector space) and it contains no nontrivial ideals, i.e., only ideals of \mathfrak{g} are $\{0\}$ and \mathfrak{g} .

Definition 0.14 (Lower central series). Let \mathfrak{g} be a Lie algebra. A lower central series of subalgebras $D_k\mathfrak{g}$ is defined inductively by $D_1\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$ and $D_k\mathfrak{g} = [\mathfrak{g}, D_{k-1}\mathfrak{g}]$.

Remark 0.15. $D_k \mathfrak{g}$ is indeed an ideal.

Proof. Since for all $h \in D_1\mathfrak{g}$, h = [X,Y] for some $X,Y \in \mathfrak{g}$, and for all $Z \in \mathfrak{g}$, $[h,Z] = [[X,Y],Z] = -[Z,[X,Y]] = [X,[Y,Z]] + [Y,[Z,X]] \in [\mathfrak{g},\mathfrak{g}] = D_1\mathfrak{g}$. Suppose $D_k\mathfrak{g}$ is an ideal. Then, for all $h \in D_{k+1}\mathfrak{g}$, h = [X,Y] for some $X \in \mathfrak{g}, Y \in D_k\mathfrak{g}$, and $[h,Z] = [[X,Y],Z] = -[Z,[X,Y]] = [X,[Y,Z]] + [Y,[Z,X]] \in [\mathfrak{g},D_k\mathfrak{g}] = D_{k+1}\mathfrak{g}$. By induction, $D_k\mathfrak{g}$ is an ideal for all $k \in \mathbb{Z}_{\geq 1}$.

Definition 0.16 (Derived series). Let \mathfrak{g} be a Lie algebra. A derived series of subalgebras $D^k\mathfrak{g}$ is defined inductively by $D^1\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$ and $D^k\mathfrak{g} = [D^{k-1}\mathfrak{g}, D^{k-1}\mathfrak{g}]$.

Remark 0.17. $D^k \mathfrak{g}$ is indeed an ideal.

Proof. Base case is the same as lower central series. Suppose $D^k \mathfrak{g}$ is an ideal. Then for all $h \in D^{k+1}$, h = [X, Y] for some $X, Y \in D^k \mathfrak{g}$. For all $Z \in \mathfrak{g}, [h, Z] = [[X, Y], Z] = -[Z, [X, Y]] = [X, [Y, Z]] + [Y, [Z, X]] \in [D^k \mathfrak{g}, D^k \mathfrak{g}] = D^{k+1} \mathfrak{g}$. Therefore, by induction, $D^k \mathfrak{g}$ is an ideal for all $k \in \mathbb{Z}_{\geq 1}$.

Definition 0.18 (Nilpotent). A Lie algebra \mathfrak{g} is said to be nilpotent if $D_k \mathfrak{g} = 0$ for some k.

Definition 0.19 (Solvable). A Lie algebra \mathfrak{g} is said to be solvable if $D^k \mathfrak{g} = 0$ for some k.

Example 0.20 (Solvable Lie algebra). An abelian Lie algebra \mathfrak{g} i.e., [X, Y] = 0 for all $X, Y \in \mathfrak{g}$ is a solvable Lie algebra.

Remark 0.21 (Simple implies NOT solvable). If a Lie algebra \mathfrak{g} is simple, then \mathfrak{g} is not solvable.

Assume it is solvable. Then, since $D^k \mathfrak{g}$ is an ideal, it has to be $D^k \mathfrak{g} = 0$ for some k. Since derived series is a descending chain, k = 1. And this implies that \mathfrak{g} is abelian, which contradicts to dim $\mathfrak{g} > 1$.

Example 0.22 (Nilpotent Lie algebra). Strictly upper triangular matrix.

Proposition 0.23 (Equivalent condition to solvability). A Lie algebra \mathfrak{g} is solvable if and only if \mathfrak{g} has a sequence of Lie subalgebras $\mathfrak{g} = \mathfrak{g}_{\mathfrak{o}} \supset \mathfrak{g}_1 \supset \cdots \supset \mathfrak{g}_k = \{0\}$ such that \mathfrak{g}_{i+1} is an ideal in \mathfrak{g}_i and $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ is abelian.

Proof. (\Longrightarrow) Since \mathfrak{g} is solvable, there exists $D^k\mathfrak{g} = 0$. So by taking $\mathfrak{g}_k = D^k$ and $\mathfrak{g}_0 = \mathfrak{g}$, we are done.

 (\Leftarrow) Since $\mathfrak{g}_0/\mathfrak{g}_1$ is abelian, for all $h \in D^1\mathfrak{g}, h = [X, Y]$ for some $X, Y \in \mathfrak{g}$. Since $[X, Y] \in \mathfrak{g}_0$ and [X, Y] = 0 in $\mathfrak{g}_0/\mathfrak{g}_1, [X, Y] \in \mathfrak{g}_1$. Suppose $D^k\mathfrak{g} \subseteq \mathfrak{g}_k$. For all $h \in D^{k+1}\mathfrak{g}$, there exist $X, Y \in D^k\mathfrak{g} \subseteq \mathfrak{g}_k$ s.t. h = [X, Y]. Since $[X, Y] \in \mathfrak{g}_k$ because \mathfrak{g}_k is an ideal, and also [X, Y] = 0 because $\mathfrak{g}_k/\mathfrak{g}_{k+1}$ is abelian, it implies that $[X, Y] \in \mathfrak{g}_{k+1}$.

Proposition 0.24. Let L be a Lie algebra. Then, (a) If L is solvable, then so are all every subalgebra $h \in L$ and homomorphic images of L.

(b) If I is a solvable ideal of L such that L/I is solvable, then L is solvable.

(c) If I, J are solvable ideals of L, then so is I + J.

Proof. (a) Since $h \subseteq L$, its derived series $D^k h \subseteq D^k L = 0$ for some k.

If a Lie algebra homomorphism $f: L \to \text{Im } f$, then $0 = f(D^k L) = D^k f(L) = D^k \text{Im } f$.

(b) Since L/I is solvable, $D^k L/I = 0$ for some k. Let $\pi : L \to L/I$ be a quotient map. Then $f(D^k L/I) = 0 \implies D^k L \subseteq I$. If $D^m I = 0$ for some m, then $D^m D^k L = D^{m+k} L \subseteq D^m I = 0$.

(c) Let $f: I \to I + J/J$ be a Lie group epimorphism (surjective homomorphism). By isomorphism theorem, $I/(I \cap J) \cong (I + J)/J$. By (a), (I + J)/J is solvable and since J is solvable, by (b), I + J is solvable.

Definition 0.25 (Semisimple). A Lie algebra \mathfrak{g} is said to be semisimple if \mathfrak{g} has no nonzero solvable ideals.

Remark 0.26. Let V be finite-dimensional vector space over a field F. If $X \in \text{End}(V)$, x is semisimple if the roots of the characteristic polynomial over F are all distinct $\iff X$ is diagonalizable.

Definition 0.27 (Radical of a Lie algebra). Let \mathfrak{g} be a Lie algebra. Then the radical $\operatorname{Rad}(\mathfrak{g})$ of \mathfrak{g} is the maximal solvable ideal.

Remark 0.28. $\operatorname{Rad}(\mathfrak{g})$ is unique.

Proof. If I, J are maximal solvable ideals, then I + J is also solvable and $I \subseteq I + J$. By maximality of I, $J \subseteq I$. Similarly, $I \subseteq J$. Therefore, I = J.

Proposition 0.29. Simple \implies semisimple.

Proof. If a Lie algebra \mathfrak{g} is simple, then it has no nontrivial ideal, therefore, $\operatorname{Rad}(\mathfrak{g}) = 0$ or $\operatorname{Rad}(\mathfrak{g}) = \mathfrak{g}$. If $\operatorname{Rad}(\mathfrak{g}) = \mathfrak{g}$, then it contradicts to remark 0.21. Thus, $\operatorname{Rad}(\mathfrak{g}) = 0$.

Proposition 0.30. $\mathfrak{g}/\operatorname{Rad}(\mathfrak{g})$ is semisimple.

Proof. Since $\operatorname{Rad}(\mathfrak{g})$ is maximal solvable ideal, for every solvable ideal $I, I \subseteq \operatorname{Rad}(\mathfrak{g})$ because $I + \operatorname{Rad}(\mathfrak{g}) = \operatorname{Rad}(\mathfrak{g})$. And by quotient map $\pi : \mathfrak{g} \to \mathfrak{g}/\operatorname{Rad}(\mathfrak{g}), \pi(I) = 0$. Therefore, $\mathfrak{g}/\operatorname{Rad}(\mathfrak{g})$ has no nonzero solvable ideal.

A short exact sequence

$$0 \to \operatorname{Rad}(\mathfrak{g}) \to \mathfrak{g} \to \mathfrak{g}/\operatorname{Rad}(\mathfrak{g}) \to 0$$

is true for all Lie algebra \mathfrak{g} . Therefore, it is extremely important to understand solvable ideals and semisimple Lie algebras ($\mathfrak{g}/\operatorname{Rad}$).

0.2 $\mathfrak{sl}_2\mathbb{C}$

Slogan: $\mathfrak{sl}_2\mathbb{C}$ plays a crucial role for understanding a general semisimple Lie algebra because any semisimple Lie algebra contains copies of $\mathfrak{sl}_2\mathbb{C}$ as a Lie subalgebra. Also, surprisingly, a representation of any semisimple Lie algebra can be well-understood through $\mathfrak{sl}_2\mathbb{C}$ and a finite group called Weyl group, so it is important to first look at the representation of $\mathfrak{sl}_2\mathbb{C}$,

Proposition 0.31. $\mathfrak{sl}_n\mathbb{C}$ has trace zero.

Proof. Since $SL_n(\mathbb{C}) = \{A \in GL_n(\mathbb{C}) \mid \det A = 1\}$, for all $X \in \mathfrak{sl}_n\mathbb{C}$, consider a path $\gamma : [0,1] \to SL_n(\mathbb{C})$ by $\gamma(t) = e^{tX}$ then $\gamma(0) = 1, \gamma'(0) = X$. Then, since $\det e^{tX} = 1$ for all $t, 1 = e^{\operatorname{tr} tX} = e^{\operatorname{t} \operatorname{tr} X}$. Therefore, $\operatorname{tr} X = 0$.

Proposition 0.32. $\mathfrak{sl}_2(\mathbb{C})$ is simple, thus semisimple.

Proof. Since $\mathfrak{sl}_2\mathbb{C}$ has trace zero, every element of $\mathfrak{sl}_2\mathbb{C}$ is of the form $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$. Therefore, $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ is a basis for $\mathfrak{sl}_2\mathbb{C}$. and [H, X] = HX - XH = 2X, [H, Y] = -2Y, [X, Y] = H. Let I be a nonzero ideal of $\mathfrak{sl}_2(\mathbb{C})$. Then, there exists an element in I of the form $aX + bY + cH \neq 0$ for some $a, b, c \in \mathbb{C}$. Then, $\mathrm{ad}(X)^2(aX + bY + cH) = \mathrm{ad}(X)(bH - 2cX) = -2bX$ and $\mathrm{ad}(Y)^2(aX + bY + cH) = \mathrm{ad}(Y)(-aH + 2cY) = -2aY$. Therefore, $X, Y \in I \implies [X, Y] = H \in I \implies I = \mathfrak{sl}_2\mathbb{C}$. Thus, $\mathfrak{sl}_2\mathbb{C}$ is simple. \Box

Theorem 0.33 (Jordan-Chevalley decomposition). Let V be a finite dimensional vector space over \mathbb{C} , $x \in \text{End}(V)$. There exist unique $x_s, x_n \in \text{End}(V)$ satisfying the conditions: $x = x_s + x_n$, where x_s is semisimple and x_n is nilpotent and $x = x_n + x_s$.

Theorem 0.34 (Weyl's theorem). Let $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$ be a finite dimensional representation of a semisimple Lie algebra. Then ϕ is completely reducible.

Theorem 0.35 (Preservation of Jordan Decomposition). Let \mathfrak{g} be a semisimple Lie algebra. For any element $X \in \mathfrak{g}$, there exist X_s and $X_n \in \mathfrak{g}$ such that for any representation $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ we have

$$\rho(X)_s = \rho(X_s)$$
 and $\rho(X)_n = \rho(X_n)$

By the preceding theorem, since H is a diagonal matrix, the action of H on V is diagonalizable, i.e., $\rho(H)$ is semisimple (diagonalizable) where ρ is a representation. Therefore, an irreducible representation Vof $\mathfrak{sl}_2\mathbb{C}$ can be written as a direct sum of eigenspaces of the representation of H i.e., $V = \bigoplus_{\alpha \in \Lambda} V_{\alpha}$ where Λ is the set of eigenvalues of $\rho(H)$. Then $H(v) = \alpha v$ for all $v \in V_{\alpha}$.

(More precisely, if $\rho : \mathfrak{sl}_2\mathbb{C} \to GL(V)$ is a adjoint representation, then $\Lambda = \{\alpha \in \mathbb{C} \mid \rho(H)(v) = \alpha v\}$.)

Proposition 0.36 (Fundamental Calculation of $\mathfrak{sl}_2\mathbb{C}$). $H(v) = \alpha v$, $H(X(v)) = (\alpha + 2)X(v)$, $H(Y(v)) = (\alpha - 2)X(v)$.

Proof. Since

$$H(X(v)) = [H, X](v) + X(H(v))$$
(15)

$$=2X(v)+X(\alpha v) \tag{16}$$

$$= (\alpha + 2)X(v), \tag{17}$$

this implies that if v is an eigenvector for H with eigenvalue α , then X(v) is also eigenvector for H, with eigenvalue $\alpha + 2$. In other words, $X : V_{\alpha} \to V_{\alpha+2}$.

Moreover, since

$$H(Y(v)) = [H, Y](v) + Y(H(v))$$
(18)

$$= -2Y(v) + Y(\alpha v) \tag{19}$$

$$= (\alpha - 2)Y(v), \tag{20}$$

so $Y: V_{\alpha} \to V_{\alpha-2}$.

Now that both X(v) and Y(v) are eigenvector for H with eigenvalues $(\alpha + 2), (\alpha - 2)$ respectively. So X sends eigenvector $v \in V_{\alpha}$ to $X(v) \in V_{\alpha+2}, Y(v) \in V_{\alpha-2}$.

We call that each α a weight and V_{α} a weight space. If a weight m_0 has $V_{m_0} \neq 0$ and $V_{m_0+2} = 0$, then m_0 is called highest weight (this is well-defined because dim $V < \infty$) and elements of V_{m_0} are called maximal vector. The result can be interpreted as this picture:

Lemma 0.37. Let $\mathfrak{g} = \mathfrak{sl}_2\mathbb{C}$, V be irreducible \mathfrak{g} -module. Choose a maximal vector $v_0 \in V_\alpha$; set $v_{-1} = 0, v_i = \frac{1}{i!}Y^iv_0 (i \ge 0)$. Then the following statements hold: (a) $Hv_i = (\alpha - 2i)v_i$, (b) $Yv_i = (i+1)v_{i+1}$, and (c) $Xv_i = (\alpha - i + 1)v_{i-1}$.

Proof. (a) Since $Y^i v_0 \in V_{\alpha-2i}$, so for $v_i \in V_{\alpha-2i}$, $Hv_i = (\alpha - 2i)v_i$. (b) $Yv_i = \frac{1}{i!}Y^{i+1}v_0 = (i+1)\frac{1}{i+1!}Y^{i+1}v_0 = (i+1)\frac{1}{i+1!}Y^{i+$

(c) Use induction. When i = 0 is clear because $Xv_0 = 0$ and $v_{-1} = 0$ by definition. Suppose (c) is true up to i - 1, then

$$\begin{split} iXv_i &= iXY(1/i!)Y^{i-1}v_0 = XYv_{i-1} \\ &= [X,Y]v_{i-1} + YXv_{i-1} \\ &= Hv_{i-1} + YXv_{i-1} \\ &= (\alpha - 2(i-1))v_{i-1} + (\alpha - i + 2)Yv_{i-2} \\ &= (\alpha - 2i + 2))v_{i-1} + (i - 1)(\alpha - i + 2)v_{i-1} \\ &= i(\alpha - i + 1)v_{i-1}. \end{split}$$

Corollary 0.38. The highest weight α of a given representation is an integer.

Proof. Following the same notation with the preceding lemma, let m be the smallest integer such that $v_m \neq 0$ and $v_{m+1} = 0$. When i = m+1, since by (c) $0 = Xv_i = (\alpha - i + 1)v_{i-1} = (\alpha - m)v_m$ and $v_m \neq 0$, $\alpha = m$. \Box

Theorem 0.39. Let V be an irreducible (m+1) dimensional $\mathfrak{g} = \mathfrak{sl}_2\mathbb{C}$ module and m_0 be the highest weight. Then, (a) $V = \bigoplus_{i=0}^m V_{m-2i} = V_m \oplus V_{m-2} \oplus \cdots \oplus V_{-m+2} \oplus V_{-m}$, in particular, $m = m_0$.

(b) For each weight μ , dim $V_{\mu} = 1$ if $V_{\mu} \neq 0$.

(c) The matrix representations of H, X, Y with regard to the basis $\langle v_0, v_1, \ldots, v_{m_0} \rangle$ are as follows:

$$H = \begin{bmatrix} m & 0 & \cdots & 0 \\ 0 & m-2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -m \end{bmatrix}, X = \begin{bmatrix} 0 & m & 0 & \cdots & 0 \\ 0 & 0 & m-1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & \cdots & m & 0 \end{bmatrix}$$

Let $\phi_m : \operatorname{End}(V) \to M_{m+1}(\mathbb{C})$ be this matrix representation.

Proof. (a) Since by using the same notation as preceding lemma, $\langle v_0, v_1, \ldots, v_{m_0} \rangle \neq 0$ is a linear subspace of V and in fact, a g-invariant subspace because by the preceding lemma. Because also $v_0, v_1, \ldots, v_{m_0}$ are eigenvector that has different eigenvalues, $v_0, v_1, \ldots, v_{m_0}$ are linearly independent. By irreducibility of V, we have $V = \langle v_0, v_1, \dots, v_{m_0} \rangle$. This implies that $m_0 + 1 = \dim \langle v_0, v_1, \dots, v_{m_0} \rangle = \dim V = m + 1 \implies m_0 = m$. Since $v_i \in V_{m_0-2i}$ by lemma, $V = \langle v_0, v_1, \dots, v_{m_0} \rangle = \bigoplus_{i=1}^m \langle v_i \rangle \subseteq \bigoplus_{i=1}^m V_{m-2i} = V$. And this tower of inclusion also implies that V_{m-2i} is generated by a single element $\langle v_i \rangle$, which proves (b).

(c) follows from the preceding lemma.

Corollary 0.40. Let $\mathfrak{g} = \mathfrak{sl}_2\mathbb{C}$, V be any finite dimensional \mathfrak{g} -module. Then by Weyl's theorem $V = \bigoplus_{i=1}^r W_i$ for some $r \in \mathbb{Z}_{>0}$ and W_i 's are irreducible g-invariant subspace of V. Then $r = \dim V_0 + \dim V_1$ where V_0, V_1 are the eigenspaces of eigenvalue 0 and 1 respectively. In particular, V is irreducible $\iff \dim V_0 + \dim V_1 =$ 1. Therefore, ϕ_m is irreducible representation.

Proof. Let $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$ be a representation. By the preceding theorem, for all $1 \leq i \leq r$, there exists

 $m \in \mathbb{Z}_{\geq 0} \text{ such that } \phi_{|W_i} \equiv \phi_m. \text{ In } W_i, \text{ since } \phi(H) = \begin{bmatrix} m & 0 & \cdots & 0 \\ 0 & m-2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -m \end{bmatrix}, \text{ the eigenvalue of } \phi(H) \text{ are } \phi(H) = \begin{bmatrix} m & 0 & \cdots & 0 \\ 0 & m-2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -m \end{bmatrix},$

 $m, m-2, \ldots, -m$. Therefore, for each W_i , we have either 0 or 1 as an eigenvalue and by the preceding theorem, its dimension is 1. Therefore, $\dim(W_i)_0 + \dim(W_i)_1 = 1$. Thus,

$$r = \sum_{i=1}^{r} \dim(W_i)_0 + \dim(W_i)_1 \tag{21}$$

$$= \dim \oplus_{i=1}^{r} (W_i)_0 + \dim \oplus_{i=1}^{r} (W_i)_1$$
(22)

$$=\dim V_0 + \dim V_1. \tag{23}$$

Remark 0.41. By the corollary, there exists unique representation $V^{(n)}$ for each $n \in \mathbb{Z}_{>0}$. $V^{(n)}$ is (n+1)dimensional vector space with eigenvalues $n, n-2, \ldots, -n+2, -n$. And this is indeed irreducible representation as we shall see later.

So an irreducible representation V of $\mathfrak{sl}_2\mathbb{C}$ is completely determined by its highest weight.

{representation V} \iff {highest weight m}.

Remark 0.42. Any representation V of $\mathfrak{sl}_2\mathbb{C}$ such that the eigenvalues of H all have the same parity (odd or even) with multiplicity one \implies irreducible by the preceding corollary.

Example 0.43. A trivial representation $V^{(0)}$ has dim $V^{(0)} = 1$. So it is irreducible by the corollary.

Example 0.44. Let V be the standard representation of \mathbb{C}^2 i.e., $V = \{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ \begin{pmatrix} a \\ -a \end{pmatrix} \mid a \in \mathbb{C}^2 \mid a+b=0 \} = \{ (a \mid a) \mid a \in \mathbb{C}^2 \mid a+b=0 \}$ \mathbb{C} }. Then, for standard basis x = (1,0), y = (0,1), H(x) = x, H(y) = -y by matrix calculation. Therefore, $V = \mathbb{C} \cdot x \oplus \mathbb{C} \cdot y = V_{-1} \oplus V_1$. Thus, V is irreducible and in fact, $V = V^{(1)}$.

Example 0.45. With the same notation with the previous example, let $W = \operatorname{Sym}^2 V = \operatorname{Sym}^2 \mathbb{C}^2 = \langle x^2, xy, y^2 \rangle$. By (8.12) in Fulton-Harris, we have $H(x \cdot x) := x \cdot H(x) + H(x) \cdot x = 2x \cdot x$, $H(x \cdot y) = x \cdot H(y) + H(x) \cdot y = 0$, $H(y \cdot y) = yH(y) + H(y)y = -2y \cdot y$. So the representation $W = \mathbb{C} \cdot x^2 \oplus \mathbb{C} \cdot xy \oplus \mathbb{C} \cdot y^2 = W_{-2} \oplus W_0 \oplus W_2$. And this representation is indeed irreducible and $\operatorname{Sym}^2 V = V^{(2)}$.

Theorem 0.46. Any irreducible representation of $\mathfrak{sl}_2\mathbb{C}$ is a symmetric power of the standard representation $V \cong \mathbb{C}^2$.

Proof. Symⁿ V of V has a basis $\langle x^n, x^{n-1}y, \ldots, y^n \rangle$ and we have $H(x^{n-k}y^k) = (n-k) \cdot H(x) \cdot x^{n-k-1}y^k + k \cdot H(y) \cdot x^{n-k}y^{k-1} = (n-2k)x^{n-k}y^k$. Therefore, eigenvalues of H on Symⁿ V are $n, n-2, \ldots, -n$ and by the corollary, Symⁿ V is irreducible $\implies V^{(n)} = \text{Sym}^n V$.