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0.1 Basic definitions of Lie algebra

Remark 0.1 (Irreducible ̸= Indecomposable when G is infinite). Recall in finite group representation, every
representation is a direct sum of irreducible representations (prop 1.5 in Fulton-Harris). However, it is not
true in the infinite case. (note: decomposable =⇒ reducible works for all (linear) representation).

Consider a representation of G = C by ρ : G → GL2(V ) = GL2(C) by ρ(r) 7→
(
1 r
0 1

)
. Then, for

V0 =

(
a
0

)
,

(
1 r
0 1

)
V0 =

(
a
0

)
. So since V0 is G-invariant, V0 is a subrepresentation of V , however, V is

indecomposable because if V is decomposable, V = W0 ⊕ W1 for some G-invariant linear subspace W0,W1

of V . There exists λ such that ρ(g)u = λu for all u = (u0, u1) ∈ W0, g ∈ G, (because G = C). Then, it
implies that u0 + rgu1 = λu0, u1 = λu1 =⇒ λ = 1 and rgu1 = 0 for all g ∈ G. Therefore, u1 = 0. So,
W0 = C(1, 0). Similarly, we get W1 = C(1, 0), which is a contradiction.

However, if a representation is semisimple, which is a concept introduced later, gives complete reducibility
(indecomposable ⇐⇒ irreducible) to it (by Weyl’s theorem).

Definition 0.2 (Lie algebra). A Lie algebra is a vector space g with an extra operation called bracket
[·, ·] : g× g → g such that following property holds: for all X,Y, Z ∈ g,
(i) [·, ·] is bilinear,
(ii) (alternating property) [X,X] = 0 for all X ∈ g ( ⇐⇒ [X,Y ] = −[Y,X]), and
(iii) (Jacobi identity) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Definition 0.3 (Lie subalgebra). Let g be a Lie algebra. A linear subspace h ⊆ g is a Lie subalgebra if for
all X,Y ∈ h, [X,Y ] ∈ h.

Definition 0.4 (Lie algebra homomorphism). Let g, h be Lie algebras. A linear map f : g → h is a Lie
algebra homomorphism if it preserves Lie bracket i.e., f([X,Y ]) = [f(X), f(Y )] for all X,Y ∈ g.

Definition 0.5 (g-module). Let g be a Lie algebra. A vector space V over a field F , endowed with an
operation L× V → V, (x, v) 7→ xv is called an g-module if for all a, b ∈ F, x, y ∈ g, v, w ∈ V :
(a) (ax+ by)v = a(xv) + b(yv),
(b) x(av + bw) = a(xv) + b(xw), and
(c) [x, y]v = xyv − yxv.

Definition 0.6 (Adjoint representation of a Lie group). Let G be a Lie group, TeG be a tangent space
of G at the identity e. Let Ψ : G → Aut(G), g 7→ Ψg where Ψg : G → G, h 7→ ghg−1. Let Ad : G →
Aut(TeG), g 7→ Ad(g) where Ad(g) = (dΨg)e : TeG → TeG. Ad is indeed a Lie group homomorphism.

From this definition, we define a adjoint representation for a Lie algebra associated to Lie group by taking
a differential of Ad. So we define:

Definition 0.7 (Adjoint representation of a Lie algebra). Let ad : g = TeG → End(TeG), X 7→ d(Ad)e(X).
We define [X,Y ] = ad(X)(Y ).

Proposition 0.8 (Bracket operation in gl(n) is commutator). As we saw in Stillwell’s book, when a Lie
group G = GLn(R), by looking at tangent vector at the identity e ∈ G,

[X,Y ] =
d

dt

∣∣∣∣
t=0

(Ad(γ(t))(Y ) (1)

=
d

dt

∣∣∣∣
t=0

γ(t)Y γ(t)−1 (2)

= γ′(0)Y γ(0) + γ(0)Y (−γ(0)−1γ′(0)) (3)

= XY − Y X (4)

where γ : [0, 1] → G is a (differentiable) path such that γ(0) = e, γ′(0) = X.
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Definition 0.9 (Adjoint Representation). Let V be a g-module. A map ad : g → gl(V ) = End(g), X →
ad(X) where ad(X) : g → g by ad(X)(Y ) = [X,Y ] is called adjoint representation. Indeed, ad is a Lie
algebra homomorphism (linearity is easy), i.e.,

ad([X,Y ])(Z) = [[X,Y ], Z] (5)

= −[Z, [X,Y ]] (∵ alternating property) (6)

= [X, [Y, v]] + [Y, [Z,X]] (∵ Jacobi’s identity) (7)

= [X, [Y,Z]]− [Y, [X,Z]] (8)

= ad(X)(ad(Y )(Z))− ad(Y )(ad(X)(Z)) (9)

= [ad(X), ad(Y )](Z) (10)

since this is for all Z ∈ g, ad([X,Y ]) = [ad(X), ad(Y )].

Definition 0.10 (Ideal of a Lie algebra). A Lie subalgebra h ⊆ g of Lie algebra g is said to be an ideal if
[X,Y ] ∈ h for all X ∈ h, Y ∈ g.

Definition 0.11 (Quotient algebra). Let g be a Lie algebra, I be an ideal of g. A quotient algebra of a g/I
is a quotient (vector) space of g with Lie bracket [X̄, Ȳ ] := [X,Y ].

This is operation is indeed well-defined because for X ∼ X ′, Y ∼ Y ′, X ′ = X + u, Y ′ = Y + v for some
u, v ∈ I, then

[X̄ ′, Ȳ ′] = [X ′, Y ′] = [X + u, Y + v] (11)

= [X + u, Y ] + [X + u, v] (12)

= [X,Y ] + [u, Y ] + [X, v] + [u, v] (13)

= [X,Y ] = [X̄, Ȳ ]. (14)

Definition 0.12 (Center of Lie algebra). The center Z(g) of a Lie algebra g is a subspace of g such that
for all X ∈ Z(g), [X,Y ] = 0 for all Y ∈ g.

Definition 0.13 (Simple Lie algebra). A Lie algebra g is simple if dim g > 1 (as vector space) and it
contains no nontrivial ideals, i.e., only ideals of g are {0} and g.

Definition 0.14 (Lower central series). Let g be a Lie algebra. A lower central series of subalgebras Dkg is
defined inductively by D1g = [g, g] and Dkg = [g, Dk−1g].

Remark 0.15. Dkg is indeed an ideal.

Proof. Since for all h ∈ D1g, h = [X,Y ] for some X,Y ∈ g, and for all Z ∈ g, [h, Z] = [[X,Y ], Z] =
−[Z, [X,Y ]] = [X, [Y,Z]] + [Y, [Z,X]] ∈ [g, g] = D1g. Suppose Dkg is an ideal. Then, for all h ∈ Dk+1g,
h = [X,Y ] for some X ∈ g, Y ∈ Dkg, and [h, Z] = [[X,Y ], Z] = −[Z, [X,Y ]] = [X, [Y, Z]] + [Y, [Z,X]] ∈
[g, Dkg] = Dk+1g. By induction, Dkg is an ideal for all k ∈ Z≥1.

Definition 0.16 (Derived series). Let g be a Lie algebra. A derived series of subalgebras Dkg is defined
inductively by D1g = [g, g] and Dkg = [Dk−1g, Dk−1g].

Remark 0.17. Dkg is indeed an ideal.

Proof. Base case is the same as lower central series. Suppose Dkg is an ideal. Then for all h ∈ Dk+1,
h = [X,Y ] for some X,Y ∈ Dkg. For all Z ∈ g, [h, Z] = [[X,Y ], Z] = −[Z, [X,Y ]] = [X, [Y,Z]]+[Y, [Z,X]] ∈
[Dkg, Dkg] = Dk+1g. Therefore, by induction, Dkg is an ideal for all k ∈ Z≥1.

Definition 0.18 (Nilpotent). A Lie algebra g is said to be nilpotent if Dkg = 0 for some k.

Definition 0.19 (Solvable). A Lie algebra g is said to be solvable if Dkg = 0 for some k.
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Example 0.20 (Solvable Lie algebra). An abelian Lie algebra g i.e., [X,Y ] = 0 for all X,Y ∈ g is a solvable
Lie algebra.

Remark 0.21 (Simple implies NOT solvable). If a Lie algebra g is simple, then g is not solvable.
Assume it is solvable. Then, since Dkg is an ideal, it has to be Dkg = 0 for some k. Since derived series

is a descending chain, k = 1. And this implies that g is abelian, which contradicts to dim g > 1.

Example 0.22 (Nilpotent Lie algebra). Strictly upper triangular matrix.

Proposition 0.23 (Equivalent condition to solvability). A Lie algebra g is solvable if and only if g has a
sequence of Lie subalgebras g = g0 ⊃ g1 ⊃ · · · ⊃ gk = {0} such that gi+1 is an ideal in gi and gi/gi+1 is
abelian.

Proof. ( =⇒ ) Since g is solvable, there exists Dkg = 0. So by taking gk = Dk and g0 = g, we are done.
( ⇐= ) Since g0/g1 is abelian, for all h ∈ D1g, h = [X,Y ] for some X,Y ∈ g. Since [X,Y ] ∈ g0 and

[X,Y ] = 0 in g0/g1, [X,Y ] ∈ g1. Suppose Dkg ⊆ gk. For all h ∈ Dk+1g, there exist X,Y ∈ Dkg ⊆ gk
s.t. h = [X,Y ]. Since [X,Y ] ∈ }k because gk is an ideal, and also [X,Y ] = 0 because gk/gk+1 is abelian, it
implies that [X,Y ] ∈ gk+1.

Proposition 0.24. Let L be a Lie algebra. Then, (a) If L is solvable, then so are all every subalgebra h ∈ L
and homomorphic images of L.
(b) If I is a solvable ideal of L such that L/I is solvable, then L is solvable.
(c) If I, J are solvable ideals of L, then so is I + J .

Proof. (a) Since h ⊆ L, its derived series Dkh ⊆ DkL = 0 for some k.
If a Lie algebra homomorphism f : L → Im f , then 0 = f(DkL) = Dkf(L) = Dk Im f.
(b) Since L/I is solvable, DkL/I = 0 for some k. Let π : L → L/I be a quotient map. Then f(DkL/I) =

0 =⇒ DkL ⊆ I. If DmI = 0 for some m, then DmDkL = Dm+kL ⊆ DmI = 0.
(c) Let f : I → I + J/J be a Lie group epimorphism (surjective homomorphism). By isomorphism

theorem, I/(I ∩ J) ∼= (I + J)/J. By (a), (I + J)/J is solvable and since J is solvable, by (b), I + J is
solvable.

Definition 0.25 (Semisimple). A Lie algebra g is said to be semisimple if g has no nonzero solvable ideals.

Remark 0.26. Let V be finite-dimensional vector space over a field F . If X ∈ End(V ), x is semisimple if
the roots of the characteristic polynomial over F are all distinct ⇐⇒ X is diagonalizable.

Definition 0.27 (Radical of a Lie algebra). Let g be a Lie algebra. Then the radical Rad(g) of g is the
maximal solvable ideal.

Remark 0.28. Rad(g) is unique.

Proof. If I, J are maximal solvable ideals, then I + J is also solvable and I ⊆ I + J . By maximality of I,
J ⊆ I. Similarly, I ⊆ J . Therefore, I = J .

Proposition 0.29. Simple =⇒ semisimple.

Proof. If a Lie algebra g is simple, then it has no nontrivial ideal, therefore, Rad(g) = 0 or Rad(g) = g. If
Rad(g) = g, then it contradicts to remark 0.21. Thus, Rad(g) = 0.

Proposition 0.30. g/Rad(g) is semisimple.

Proof. Since Rad(g) is maximal solvable ideal, for every solvable ideal I, I ⊆ Rad(g) because I +Rad(g) =
Rad(g). And by quotient map π : g → g/Rad(g), π(I) = 0. Therefore, g/Rad(g) has no nonzero solvable
ideal.

A short exact sequence
0 → Rad(g) → g → g/Rad(g) → 0

is true for all Lie algebra g. Therefore, it is extremely important to understand solvable ideals and semisimple
Lie algebras (g/Rad).
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0.2 sl2C
Slogan: sl2C plays a crucial role for understanding a general semisimple Lie algebra because any semisimple
Lie algebra contains copies of sl2C as a Lie subalgebra. Also, surprisingly, a representation of any semisimple
Lie algebra can be well-understood through sl2C and a finite group called Weyl group, so it is important to
first look at the representation of sl2C,

Proposition 0.31. slnC has trace zero.

Proof. Since SLn(C) = {A ∈ GLn(C) | detA = 1}, for all X ∈ slnC, consider a path γ : [0, 1] → SLn(C)
by γ(t) = etX then γ(0) = 1, γ′(0) = X. Then, since det etX = 1 for all t, 1 = etr tX = et tr X. Therefore,
trX = 0.

Proposition 0.32. sl2(C) is simple, thus semisimple.

Proof. Since sl2C has trace zero, every element of sl2C is of the form

(
a b
c −a

)
. Therefore,H =

(
1 0
0 −1

)
, X =(

0 1
0 0

)
and Y =

(
0 0
1 0

)
is a basis for sl2C. and [H,X] = HX − XH = 2X, [H,Y ] = −2Y, [X,Y ] = H.

Let I be a nonzero ideal of sl2(C). Then, there exists an element in I of the form aX + bY + cH ̸= 0 for
some a, b, c ∈ C. Then, ad(X)2(aX + bY + cH) = ad(X)(bH − 2cX) = −2bX and ad(Y )2(aX + bY + cH) =
ad(Y )(−aH + 2cY ) = −2aY. Therefore, X,Y ∈ I =⇒ [X,Y ] = H ∈ I =⇒ I = sl2C. Thus, sl2C is
simple.

Theorem 0.33 (Jordan-Chevalley decomposition). Let V be a finite dimensional vector space over C,
x ∈ End(V ). There exist unique xs, xn ∈ End(V ) satisfying the conditions: x = xs + xn, where xs is
semisimple and xn is nilpotent and x = xn + xs.

Theorem 0.34 (Weyl’s theorem). Let ϕ : g → gl(V ) be a finite dimensional representation of a semisimple
Lie algebra. Then ϕ is completely reducible.

Theorem 0.35 (Preservation of Jordan Decomposition). Let g be a semisimple Lie algebra. For any element
X ∈ g, there exist Xs and Xn ∈ g such that for any representation ρ : g → gl(V ) we have

ρ(X)s = ρ(Xs) and ρ(X)n = ρ(Xn)

By the preceding theorem, since H is a diagonal matrix, the action of H on V is diagonalizable, i.e.,
ρ(H) is semisimple (diagonalizable) where ρ is a representation. Therefore, an irreducible representation V
of sl2C can be written as a direct sum of eigenspaces of the representation of H i.e., V = ⊕α∈ΛVα where Λ
is the set of eigenvalues of ρ(H). Then H(v) = αv for all v ∈ Vα.

(More precisely, if ρ : sl2C → GL(V ) is a adjoint representation, then Λ = {α ∈ C | ρ(H)(v) = αv}.)

Proposition 0.36 (Fundamental Calculation of sl2C). H(v) = αv, H(X(v)) = (α + 2)X(v), H(Y (v)) =
(α− 2)X(v).

Proof. Since

H(X(v)) = [H,X](v) +X(H(v)) (15)

= 2X(v) +X(αv) (16)

= (α+ 2)X(v), (17)

this implies that if v is an eigenvector for H with eigenvalue α, then X(v) is also eigenvector for H, with
eigenvalue α+ 2. In other words, X : Vα → Vα+2.
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Moreover, since

H(Y (v)) = [H,Y ](v) + Y (H(v)) (18)

= −2Y (v) + Y (αv) (19)

= (α− 2)Y (v), (20)

so Y : Vα → Vα−2.

Now that both X(v) and Y (v) are eigenvector for H with eigenvalues (α+2), (α− 2) respectively. So X
sends eigenvector v ∈ Vα to X(v) ∈ Vα+2, Y (v) ∈ Vα−2.

We call that each α a weight and Vα a weight space. If a weight m0 has Vm0 ̸= 0 and Vm0+2 = 0, then
m0 is called highest weight (this is well-defined because dimV < ∞) and elements of Vm0

are called maximal
vector. The result can be interpreted as this picture:

· · · Vα−2 Vα Vα+2 · · ·

YY

XX

Y

X X

Y

H H H

Lemma 0.37. Let g = sl2C, V be irreducible g-module. Choose a maximal vector v0 ∈ Vα; set v−1 = 0, vi =
1
i!Y

iv0(i ≥ 0). Then the following statements hold:
(a) Hvi = (α− 2i)vi,
(b) Y vi = (i+ 1)vi+1, and
(c) Xvi = (α− i+ 1)vi−1.

Proof. (a) Since Y iv0 ∈ Vα−2i, so for vi ∈ Vα−2i, Hvi = (α−2i)vi. (b) Y vi =
1
i!Y

i+1v0 = (i+1) 1
i+1!Y

i+1v0 =
(i+ 1)vi+1.

(c) Use induction. When i = 0 is clear because Xv0 = 0 and v−1 = 0 by definition. Suppose (c) is true
up to i− 1, then

iXvi = iXY (1/i!)Y i−1v0 = XY vi−1

= [X,Y ]vi−1 + Y Xvi−1

= Hvi−1 + Y Xvi−1

= (α− 2(i− 1))vi−1 + (α− i+ 2)Y vi−2

= (α− 2i+ 2))vi−1 + (i− 1)(α− i+ 2)vi−1

= i(α− i+ 1)vi−1.

Corollary 0.38. The highest weight α of a given representation is an integer.

Proof. Following the same notation with the preceding lemma, let m be the smallest integer such that vm ̸= 0
and vm+1 = 0. When i = m+1, since by (c) 0 = Xvi = (α− i+1)vi−1 = (α−m)vm and vm ̸= 0, α = m.

Theorem 0.39. Let V be an irreducible (m+1) dimensional g = sl2C module and m0 be the highest weight.
Then,
(a) V = ⊕m

i=0Vm−2i = Vm ⊕ Vm−2 ⊕ · · · ⊕ V−m+2 ⊕ V−m, in particular, m = m0.
(b) For each weight µ, dimVµ = 1 if Vµ ̸= 0.
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(c) The matrix representations of H,X, Y with regard to the basis ⟨v0, v1, . . . , vm0⟩ are as follows:

H =


m 0 · · · 0
0 m− 2 · · · 0
...

...
. . .

...
0 0 · · · −m

 , X =


0 m 0 · · · 0
0 0 m− 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0

 , Y =



0 0 · · · 0 0
1 0 · · · 0 0

0 2
. . .

...
...

...
...

. . . 0 0
0 0 · · · m 0

 .

Let ϕm : End(V ) → Mm+1(C) be this matrix representation.

Proof. (a) Since by using the same notation as preceding lemma, ⟨v0, v1, . . . , vm0⟩ ≠ 0 is a linear subspace
of V and in fact, a g-invariant subspace because by the preceding lemma. Because also v0, v1, . . . , vm0

are
eigenvector that has different eigenvalues, v0, v1, . . . , vm0

are linearly independent. By irreducibility of V , we
have V = ⟨v0, v1, . . . , vm0

⟩. This implies that m0+1 = dim⟨v0, v1, . . . , vm0
⟩ = dimV = m+1 =⇒ m0 = m.

Since vi ∈ Vm0−2i by lemma, V = ⟨v0, v1, . . . , vm0
⟩ = ⊕m

i=1⟨vi⟩ ⊆ ⊕m
i=1Vm−2i = V . And this tower of

inclusion also implies that Vm−2i is generated by a single element ⟨vi⟩, which proves (b).
(c) follows from the preceding lemma.

Corollary 0.40. Let g = sl2C, V be any finite dimensional g-module. Then by Weyl’s theorem V = ⊕r
i=1Wi

for some r ∈ Z≥0 and Wi’s are irreducible g-invariant subspace of V . Then r = dimV0+dimV1 where V0, V1

are the eigenspaces of eigenvalue 0 and 1 respectively. In particular, V is irreducible ⇐⇒ dimV0+dimV1 =
1. Therefore, ϕm is irreducible representation.

Proof. Let ϕ : g → gl(V ) be a representation. By the preceding theorem, for all 1 ≤ i ≤ r, there exists

m ∈ Z≥0 such that ϕ|Wi
≡ ϕm. In Wi, since ϕ(H) =


m 0 · · · 0
0 m− 2 · · · 0
...

...
. . .

...
0 0 · · · −m

, the eigenvalue of ϕ(H) are

m,m − 2, . . . ,−m. Therefore, for each Wi, we have either 0 or 1 as an eigenvalue and by the preceding
theorem, its dimension is 1. Therefore, dim(Wi)0 + dim(Wi)1 = 1. Thus,

r =

r∑
i=1

dim(Wi)0 + dim(Wi)1 (21)

= dim⊕r
i=1(Wi)0 + dim⊕r

i=1(Wi)1 (22)

= dimV0 + dimV1. (23)

Remark 0.41. By the corollary, there exists unique representation V (n) for each n ∈ Z≥0. V (n) is (n+ 1)-
dimensional vector space with eigenvalues n, n− 2, . . . ,−n+ 2,−n. And this is indeed irreducible represen-
tation as we shall see later.

So an irreducible representation V of sl2C is completely determined by its highest weight.

{representation V } ⇐⇒ {highest weight m}.

Remark 0.42. Any representation V of sl2C such that the eigenvalues of H all have the same parity (odd
or even) with multiplicity one =⇒ irreducible by the preceding corollary.

Example 0.43. A trivial representation V (0) has dimV (0) = 1. So it is irreducible by the corollary.

Example 0.44. Let V be the standard representation of C2 i.e., V = {
(
a
b

)
∈ C2 | a+b = 0} = {

(
a
−a

)
| a ∈

C}. Then, for standard basis x = (1, 0), y = (0, 1), H(x) = x,H(y) = −y by matrix calculation. Therefore,
V = C · x⊕ C · y = V−1 ⊕ V1. Thus, V is irreducible and in fact, V = V (1).
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Example 0.45. With the same notation with the previous example, let W = Sym2 V = Sym2 C2 =
⟨x2, xy, y2⟩. By (8.12) in Fulton-Harris, we have H(x · x) := x · H(x) + H(x) · x = 2x · x,H(x · y) =
x ·H(y)+H(x) ·y = 0, H(y ·y) = yH(y)+H(y)y = −2y ·y. So the representation W = C ·x2⊕C ·xy⊕C ·y2 =
W−2 ⊕W0 ⊕W2. And this representation is indeed irreducible and Sym2 V = V (2).

Theorem 0.46. Any irreducible representation of sl2C is a symmetric power of the standard representation
V ∼= C2.

Proof. Symn V of V has a basis ⟨xn, xn−1y, . . . , yn⟩ and we have H(xn−kyk) = (n− k) ·H(x) · xn−k−1yk +
k ·H(y) · xn−kyk−1 = (n− 2k)xn−kyk. Therefore, eigenvalues of H on Symn V are n, n− 2, . . . ,−n and by
the corollary, Symn V is irreducible =⇒ V (n) = Symn V.
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