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Abstract

S-arithmetic Khintchine-type theorem for products of non-degenerate
analytic p-adic manifolds is proved for the convergence case. In the p-
adic case the divergence part is also obtained. 1

1 Introduction

Metric Diophantine approximation The metric theory of Diophantine
approximation studies the interplay between the precision of approximation of
real or p-adic numbers by rationals and the measure of the approximated set
within certain prescribed precision. The “finer” is the precision the “smaller”
is the approximated set. The theory was initiated by A. Khintchine, who in
[Kh24] proved an “almost every” vs “almost no” dichotomy for R. Let us state
Khintchine’s result. Given a decreasing function ψ : R+ → R+ we define the
notion of a ψ-approximable number as follows; A real number ξ is called ψ-
approximable if for infinitely many integers p and q, one has |qξ−p| < ψ(|q|). It
is called very well approximable (VWA) if it is ψε-A where ψε = 1/q1+ε for some
positive ε. A. Khintchine showed that Lebesgue almost every (resp. almost no)
real number is ψ-A if

∑∞
q=1 ψ(q) diverges (resp. converges). We refer to [St80,

Chapter IV, Section 5], [BD99, Chap. 1] and [Ca57, Chap. 5] for an account
on this and further historical remarks.

The metric theory of Diophantine approximation on manifolds was consid-
ered as early as 1932 when K. Mahler [Ma32] conjectured that almost no point of
the Veronese curve, (x, x2, · · · , xn), is VWA. This conjecture drew considerable
amount of attention and was finally settled affirmatively by V. G. Sprindžuk
in [Sp64, Sp69]. Sprindžuk’s idea (the so called essential and non-essential do-
mains) has been applied by many people to attack many problems stated by
him in both the real and the p-adic setting (the definition of ψ-A in the p-adic
setting is given bellow). One should mention several works conducted on this
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issue by V. Beresnevich, V. Bernik, M. M. Dodson, E. Kovalevskaya and others.
See for example [Ber00b, Ber02, BBK05, BK03, Ko00].

In 1985 S. G. Dani observed a nice relationship between flows on homoge-
neous spaces and Diophantine approximation. This point of view was taken on
and pushed much further in later works of D. Kleinbock and G. A. Margulis.
In [KM98] Kleinbock and Margulis introduced a beautiful dynamical approach
to the metric theory of Diophantine approximation and settled a multiplicative
version of Sprindžuk ’s conjecture; we refer to their paper for the formulation
and further comments. The “almost every” vs “almost no” dichotomy was also
completed within a few years from then, see in [BKM01, BBKM02]. It is worth
mentioning that philosophically speaking the dynamical approach in [KM98]
and the idea of essential and non-essential domains of Sprindžuk are both based
on a delicate covering argument.

One expects, from the nature of the dynamical approach, that this ap-
proach would work just as well in the S-arithmetic setting. This was started by
D. Kleinbock and G. Tomanov [KT07]. They defined the notion of VWA and
showed an analogue of the Sprindžuk’s conjecture in the S-arithmetic setting.
This general philosophy was taken on in [MS08] where we proved a Khintchine
type theorem in S-arithmetic setting. In that paper the assumption was that the
finite set of places, S, contains the infinite place. We postponed the completion
of the picture to this paper.

Let us fix some notations and conventions which are needed in order to
state the main results of this paper, these notations will be used throughout the
paper. We will not define the technical terms in here but rather refer the reader
to the corresponding section for the precise definitions and remarks.

We let S be a finite set of places of Q whose cardinality will be denoted
by κ throughout. We will always assume that S does not contain the infinite
place and let S̃ = S ∪ {∞}. Define QS =

∏
ν∈S Qν and correspondingly QS̃ =∏

ν∈S̃ Qν .

We let Ψ : Zn+1 \ {0} → R+ be a map. A vector ξ ∈ Qn
S is said to be Ψ-A if

For infinitely many q̃ = (q, q0) ∈ Zn × Z one has |q · ξ + q0|κS ≤ Ψ(q̃).

For all ν ∈ S, we fix once and for all an open bounded ball Uν in Qdν
ν . Let

fν = (f (1)
ν , . . . , f (n)

ν ) : Uν → Qn
ν

be an analytic non-degenerate map i.e. fν ’s are analytic and the restrictions of
1, f (1)

ν , · · · , f (n)
ν to any open ball of Uν are linearly independent over Qν .

Define U =
∏

ν∈S Uν and let f(x) = (fν(xν))ν∈S , where x = (xν)ν∈S ∈ U.

Since U is compact we may replace f by f/M , for a suitable S̃-integer M , and
assume that ‖fν(xν)‖ν ≤ 1, ‖∇fν(xν)‖ν ≤ 1, and L ≤ 1 where

L = sup
⋃

|β|=2,ν∈S

{2|Φβfν(x)|ν | x ∈ Uν × Uν × Uν},

for any ν ∈ S. The functions Φβfν here are certain two fold difference quotients
of fν , see section 2 for the exact definition.
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We can now state the theorems.

Theorem 1.1. Let U and f be as above. Further assume that Ψ : Zn+1\{0} →
R+, is a function which satisfies

(i) Ψ is norm-decreasing, i.e. Ψ(q) ≥ Ψ(q′) for |q|∞ ≤ |q′|∞,

(ii)
∑

q∈Zn+1\{0}Ψ(q) <∞.

then the set
Wf ,Ψ = {x ∈ U| f(x) is Ψ-A}

has measure zero.

Our result in the divergent part is somewhat more restrictive. It is only the
p-adic case that is proved here i.e. S consists of only one valuation. Note also
the function Ψ in theorem 1.2 is more specific.

Theorem 1.2. Let U be an open subset of Qd
ν and let f : U → Qn

ν be a
non-degenerate analytic map (in the above sense). Let ψ : Z → R+ be a non-
increasing function for which

∑
k ψ(k) diverges. Define the function Ψ by

Ψ(q̃) = ‖q̃‖−n
∞ ψ(‖q̃‖∞) for any q̃ ∈ Zn+1 \ {0}

Then the set
Wf,Ψ = {x ∈ U | f(x) is Ψ-A}

has full measure.

Remark 1.3.

1. It is clear that Theorem 1.1 and Theorem 1.2 are valid for any non-degenerate
analytic QS-manifold. The general case is a direct consequence of the above
theorems, and the posed conditions are merely for our convenience in the course
of the proof.

2. D. Kleinbock and G. Tomanov [KT07] proved Theorem 1.1 when Ψ(q̃) =
‖q̃‖−(1+n)(1+ε)

S and the above theorems answers their question.

3. V. Beresnevich, V. Bernik, E. Kovalevskaya [BBK05] proved Theorem 1.1
and Theorem 1.2 for the the Veronese curve, i.e. f(x) = (x, x2, . . . , xn), and
S = {ν}.

4. Although our result in the divergent case is more restrictive than that of the
convergence case, it actually is the formulation which has been historically con-
sidered. For example Mahler’s conjecture for the Veronese curve is formulated
in the same setting as in Theorem 1.2. However it is interesting to prove a
multiplicative version of the divergence part, this is not known in the real case
either.
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5. Here we just look at the simultaneous approximation in non-Archimedean
places by integers. As was mentioned above, in [MS08], we proved a conver-
gence Khintchine-type theorem for QS-manifolds, where S contains the infinite
place. Indeed, in that case, we considered the field of rational numbers as the
quotient field of R a finitely generated subring of Q and asked how “large” the
denominator should be to get a good approximation. More precisely, we care-
fully defined the notion of (Ψ,R)-A for any R a finitely generated subring of Q
and Ψ a function from Rn to R+, and proved a convergence R-Khintchine-type
theorem (we refer the reader to [MS08] for the definition and the exact state-
ment of the mentioned theorem). Unfortunately, we could not come up with a
good definition of such a notion in the absence of the Archimedean place. That
is why, in this article, we only approximate

∏
ν∈S Zν-points by integral points

instead of approximating them by ZS′-points, where S and S′ are two disjoint
finite sets of finite places.

6. Most of our proof in the convergence part works for a function Ψ which is only
decreasing in the S-norm of the coordinates, and not necessarily in the norm of
the vector. In fact, in [MS08], we work with this more general class of Ψ’s. It
is interesting to see if the norm-decreasing condition can be relaxed.

The proof of the convergence part is very similar to the proof in [MS08]. In
particular the main technical difficulties that arise in carrying out the strategies
developed in [BKM01] to the S-arithmetic setting have the same nature in these
two papers. As similar as these two papers are, there are many differences in
details in both the “calculus lemma” and the “dynamics part”. This and the
fact that the divergence case is also treated here demanded a coherent separate
paper in the p-adic setting.

Theorem 1.1 will be proved with the aid of the following two theorems and
applying Borel-Cantelli lemma. In what follows, let f̃ν = (fν , 1) and f̃(x) =
(f̃ν(xν))ν∈S . The following is what we refered to as the calculus lemma.

Theorem 1.4. Let U, f be as in Theorem 1.1 and 0 < ε < 1
2κ . For δ > 0 and

any ball B ⊂ U let

A =
{
x ∈ B| ∃ q̃ ∈ Zn+1 \ {0}, |q̃|∞ < T,

|q̃ · f̃(x)|κS < δT−n−1

‖q∇f(x)‖ν > |q̃|−ε
∞ for all ν ∈ S

}
.

Then we have |A| < Cδ |B|, for some universal constant C.

The remaining set will be controlled using the following theorem. The proof
of this theorm has dynamical nature.

Theorem 1.5. Let U and f be as in theorem 1.1. For any x = (xν)ν∈S ∈ U,
one can find a neighborhood V =

∏
ν∈S Vν ⊆ U of x and α > 0 with the following

property: If B ⊆ V is any ball, then there exists E > 0 such that for any choice
of T0, · · · , Tn ≥ 1, Kν > 0 and 0 < δκ ≤ min 1

Ti
where δκT0 · · ·Tn

∏
ν∈S Kν ≤ 1

one has∣∣∣∣∣∣



x ∈ B| ∃q̃ ∈ Zn+1 \ {0} :

|q̃ · f̃(x)|S < δ
‖∇qfν(x)‖ν < Kν

|qi|∞ < Ti





∣∣∣∣∣∣
≤ E εα|B|, (1.5)
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where ε = max{δ, (δκT0 . . . Tn

∏
ν∈S Kν)

1
n+1 )}.

The main idea in the proof of Theorem 1.2 is based on the method of regular
systems. This method was introduced by Baker and Schmidt [BS70] and was
applied in [Ber99] in dimension one and later in [BBKM02] it was generalized to
any dimension. In our proof we will use the estimates obtained in theorems 1.4
and 1.5, and get the following theorem, which provides us with a suitable regular
system of resonant sets. Then a general result on regular systems (cf. Theo-
rem 7.3) will kick in and the proof will be concluded. See section 7 for the
definitions.

Theorem 1.6. Let f and U be as in Theorem 1.2. Given q̃ = (q, q0) ∈ Zn×Z,
we let

Rq,q0 = {x ∈ U | q · f(x) + q0 = 0}.
Define the following set

Rf = {Rq,q0 | (q, q0) ∈ Zn × Z}

and the function N(Rq,q0) = ‖q̃‖n+1
∞ . Then, for almost every x0 ∈ U , there is a

ball B0 ⊂ U centered at x0 such that (R, N, d− 1) is a regular system in B0.

Structure of the paper. In section 2 we recall some basic geometric and
analytic facts about p-adic and S-arithmetic spaces. Theorem 1.4 is proved in
section 3. Section 4 is devoted to the notion of good functions. This section
involves only statements of several technical ingredients needed later in the
paper. Most of the proofs can be found in [MS08]. Section 5 is devoted to
the proof of theorem 1.5. This is actually done modulo theorem 5.1 which
provides a translation of theorem 1.5 into a problem with dynamical nature.
This dynamical problem is then solved in section 6 using an S-arithmetic version
of a theorem in [KM98] which was proved in [KT07]. We recall the notion of
regular systems in section 7 and prove theorem 1.6 in this section. The proof
of the main theorems will be completed in section 8. The final section contains
some concluding remarks and open problems.

Acknowledgments. Authors would like to thank G. A. Margulis for in-
troducing this topic and suggesting this problem to them. We are in debt of
D. Kleinbock for reading the first draft and useful discussions. We also thank
the anonymous referee for his/her remarks and suggestions.

2 Notations and Preliminaries

Calculus of functions on local fields. The terminology recalled here is
from [Sf84]. Let F be a local field and let f be an F -valued function defined on
an open subset U of F. Let

∇kU := {(x1, · · · , xk) ∈ Uk| xi 6= xj for i 6= j},
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and define the kth order difference quotient Φkf : ∇k+1U → F of f inductively
by Φ0f = f and

Φkf(x1, x2, · · · , xk+1) :=
Φk−1f(x1, x3, · · · , xk+1)− Φk−1f(x2, x3, · · · , xk+1)

x1 − x2
.

As one sees readily Φkf is a symmetric function of its k + 1 variables. The
function f, is then called Ck at a ∈ U if the following limit exits

lim
(x1,··· ,xk+1)→(a,··· ,a)

Φkf(x1, · · · , xk+1),

and f is called Ck on U if it is Ck at every point a ∈ U . This is equivalent to
Φkf being extendable to Φ̄kf : Uk+1 → F. This extension, if exists, is indeed
unique. The Ck functions are k times differentiable, and

f (k)(x) = k!Φ̄k(x, · · · , x).

Note that, f ∈ Ck implies f (k) is continuous but the converse fails. Also C∞(U)
is defined to be the class of functions which are Ck on U , for any k. Analytic
functions are indeed C∞.

Let now f be an F -valued function of several variables. Denote by Φk
i f the

kth order difference quotient of f with respect to the ith coordinate. Then for
any multi-index β = (i1, · · · , id) let

Φβf := Φi1
1 ◦ · · · ◦ Φid

d f.

One defines the notion of Ck functions correspondingly.
S-Arithmetic spaces: Let ν be any place of Q we denote by Qν the

completion of Q with respect to ν and let QS =
∏

ν∈S Qν . If ν is a finite place
we let pν be the uniformizer and Zν the ring of ν-integers. Given a Qν-vector
space V and a basis B we let ‖ ‖B denote the max norm with respect to this
basis and we drop the index B from the notation if there is no confusion. This
naturally extends to a norm on

∧V. If R is any ring and x, y ∈ Rn we let
x · y =

∑n
i=1 x

(i)y(i). The following is the definition of “orthogonality” which
will be useful in the sequel.

Definition 2.1. Let ν be a finite place of Q. A set of vectors x1, · · · , xn in
Qm

ν , is called orthonormal if ‖x1‖ = ‖x2‖ = · · · = ‖xn‖ = ‖x1 ∧ · · · ∧ xn‖ = 1,
or equivalently when it can be extended to a Zν-base of Zm

ν .

Recall that ZS̃ = Q ∩QS̃ ·
∏

ν 6∈S Zν is a co-compact lattice in QS̃ , where Q
is embedded diagonally. We normalize the Haar measure so that µν(Zν) = 1
for all finite places and µ∞([0, 1]) = 1 for the infinite place, and we let µ be the
product measure on QS̃ . With this normalization ZS̃ has co-volume one in QS̃ .
For any x ∈ ∏

ν∈S Qmν
ν , let c(x) =

∏
ν∈S ‖xν‖ν . One clearly has c(x) ≤ ‖x‖κ

S .
The following gives the description of of discrete ZS̃-modules in

∏
ν∈S̃ Qmν

ν .
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Lemma 2.2. (cf. [KT07, Proposition 7.2]) If ∆ is a discrete ZS̃-submodule
of

∏
ν∈S̃ Qmν

ν , then there are x(1), · · · ,x(r) in
∏

ν∈S̃ Qmν
ν so that ∆ = ZS̃x(1) ⊕

· · · ⊕ ZS̃x(r). Moreover x(1)
ν , · · · , x(r)

ν are linearly independent over Qν for any
place ν ∈ S̃
Definition 2.3. Let Γ be a discrete ZS̃-submodule of

∏
ν∈S̃ Qmν

ν then a sub-
module ∆ of Γ is called a “primitive submodule” if ∆ = ∆QS̃

∩ Γ, where ∆QS̃
is

the QS̃-span of ∆.

Remark 2.4. Let Γ and ∆ be as in definition 2.3; then ∆ is a primitive
submodule of Γ, if and only if there exists a complementary ZS̃-submodule
∆′ ⊆ Γ, i.e. ∆ ∩∆′ = 0 and ∆ + ∆′ = Γ.

3 Proof of Theorem 1.4

Fix q = (q1, . . . , qn) with |q|∞ < T and, as in the introduction, let q̃ = (q, q0).
Let

Aq =
{
x ∈ A|∃ q0, |q0|∞ < T,

|q · f(x) + q0|κS < δT−n−1

‖q∇f(x)‖ν > |q̃|−ε
∞ for all ν ∈ S

}
.

We will show that, |Aq| < δ T−n|B|. We then will sum over all possible q’s and
the proof will be concluded.
We set

R = T
1
κ , and B(x) =

∏

ν∈S

B(xν ,
1

4R‖q∇fν(xν)‖ν
).

One obviously has Aq ⊆ ∪x∈AqB(x). Let x ∈ Aq, then there exists q0 such that

|q̃ · f̃(x)|κS < δT−n−1, where q̃ = (q0, . . . , qn). Let y ∈ B(x); then, for any ν a
place in S, we have

q·fν(yν) = q·fν(xν)+(q∇fν(xν))·(xν−yν)+
∑

i,j

Φij(q·fν) (x(i)
ν −y(i)

ν )(x(j)
ν −y(j)

ν ).

Comparing the maximum possible values taking into consideration that ε < 1
2κ ,

we get that |q̃ · f̃(y)|S < 1
4R hence we have |q̃ · f̃ν(yν)|ν < 1

4R for all ν ∈ S. Now

if there are q10 & q20 so that |q̃(i) · f̃ν |ν < 1
4R , we get

∏
ν∈S |q10 − q20 |ν < 1

4T , which
by the product formula gives q10 = q20 .

We now want to give an upper bound for |B(x) ∩ Aq|, where x ∈ Aq. This
will be done using (i) and (ii) below

(i) For any y ∈ B(x) and ν ∈ S, one has ‖∇q.fν(yν)−∇q.fν(xν)‖ν < ‖∇q.fν(xν)‖ν/4.
To see this, let z = (zν) where yν = xν + zν . In this setting, one has

∂iq · fν(yν) = ∂iq · fν(xν) +
∑

j

Φ(1)
j (∂iq · fν)(t(j)ν , t(j−1)

ν )zj
ν
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= ∂iq ·fν(xν)+
∑

j

(Φji(q ·fν(t(j)ν , t(j−1)
ν , t(j−1)

ν ))+Φji(q ·fν(t(j)ν , t(j)ν , t(j−1)
ν )))zj

ν ,

where t(i)ν ’s are certain expressions in terms of coordinates of xν and yν . Hence

|∂iq · fν(yν)− ∂iq · fν(xν)|ν < |zν |ν ≤ 1
4R‖∇q · fν(xν)‖ν

≤ ‖∇q · fν(xν)‖ν

4
,

as we claimed.
(ii) We now bound |(Aq)ν ∩ B(xν ,

1
4R‖q∇fν(xν)‖ν

)| from above for all ν ∈ S,

where (Aq)ν is the projection of Aq to the place ν. Without loss of generality
we may assume |∇qfν(xν)|ν = |q · ∂1fν(xν)|ν . Let y ∈ B(x)∩Aq, then we have

q̃ · f̃ν(yν + αe1)− q̃ · f̃ν(yν) = q · ∂1fν(yν)α+ Φ11q · f(yν + αe1, yν , yν)α2.

As before a norm comparison, using the fact ε < 1
2κ , gives us

|q̃ · f̃ν(yν + αe1)− q̃ · f̃ν(yν)|ν = |q · ∂1fν(yν)|ν |α|ν (1)

Now set ŷν = (ŷ(1)
ν , y

(2)
ν , . . . , y

(dν)
ν ) for fixed {y2

ν , . . . , y
dν
ν }. Using (1) we conclude

that the measure of

{y1
ν ∈ Qν | yν = (y(1)

ν , ŷν) ∈ B(xν ,
1

4R‖q∇fν(xν)‖ν
) ∩ (Aq)ν}

is at most C′′ (δT−n−1)
1
κ

‖∇q·fν(xν)‖ν
, where C ′′ is a universal constant. This gives us

|(Aq)ν ∩B(xν ,
1

4R‖q∇fν(xν)‖ν
)| ≤ C ′δ

1
κR T

−n−1
κ |B(xν ,

1
4R‖q∇fν(xν)‖ν

)|.

Recall that for non-Archimedean valuations two balls are either disjoint or
one contains the other. We get |(Aq)ν | ≤ C ′δ

1
κR T

−n−1
κ |Bν |. Multiplying these

inequalities for various ν’s we have

|Aq| ≤ CδT−n|B|.

We now sum up over all possible q’s and get |A| ≤ Cδ|B|, as we wished.

4 Good Functions

In this section we will state conditions which guarantee a “polynomial like”
behavior of certain classes of maps on local fields. The definition of a “good
function” which is given below generalizes conditions on the class of functions
considered in [EMS97]. This definition was suggested in [KM98]. In what follows
we just recall statements which are needed in the course of proof of theorem 5.1.
The proofs can be found in [MS08].
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Definition 4.1. (cf. [KM98, Section 3]) Let C and α be positive real numbers.
A function f defined on an open set V of X =

∏
ν∈S Qmν

ν is called (C,α)-good,
if for any open ball B ⊂ V and any ε > 0 one has

|{x ∈ B| ‖f(x)‖ < ε · sup
x∈B

‖f(x)‖}| ≤ C εα|B|.

Remark 4.2. The following are consequences of the definition. Let X,V and
f be as in definition 4.1. Then

(i) f is (C,α)-good on V if and only if ‖f‖ is (C,α)-good.

(ii) If f is (C,α)-good on V, then so is λf for any λ ∈ QS .

(iii) Let I be a countable index set, if fi is (C,α)-good on V for any i ∈ I,
then so is supi∈I ‖fi‖.

(iv) If f is (C,α)-good on V and c1 ≤ ‖f(x)‖S/‖g(x)‖S ≤ c2, for any x ∈ V,
then g is (C(c2/c1)α, α)-good on V.

As we mentioned above the definition of good functions was motivated by
class of functions which have polynomial like behavior. The next lemma guar-
antees that indeed polynomials are good.

Lemma 4.3. (cf. [KT07, Lemma 2.4]) Let ν be any place of Q and p ∈
Qν [x1, . . . , xd] be a polynomial of degree not greater than l. Then there exists
C = Cd,l independent of p, such that p is (C, 1/dl)-good on Qν .

Next theorem “relates” the definition of a good function to conditions on its
derivatives.

Theorem 4.4. (cf. [MS08, Theorem 4.4] ) Let V1, . . . , Vd be nonempty open
sets in Qν . Let k ∈ N, A1, . . . , Ad, A

′
1, . . . , A

′
d be positive real numbers and f ∈

Ck(V1 × · · · × Vd) be such that

Ai ≤ |Φk
i f |ν ≤ A′i on5k+1 Vi ×

∏

j 6=i

Vj , i = 1, . . . , d.

Then f is (C,α)-good on V1 × · · · × Vd, where C and α depend only on k, d,Ai,
and A′i .

We need to show some families of functions are good with uniform constants.
The following gives a condition to guarantee such assertion. The proof of this
uses compactness arguments and Theorem 4.4 above. In our setting we actually
will use the following corollary.

Theorem 4.5. (cf. [MS08, Theorem 4.5]) Let U be an open neighborhood of
x0 ∈ Qm

ν and let F ⊂ Cl(U) be a family of functions f : U → Qν such that

1. {∇f : f ∈ F} is compact in Cl−1(U)

2. inff∈F sup|β|≤l |∂βf(x0)| > 0.
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Then there exist a neighborhood V ⊆ U of x0 and positive numbers C = C(F)
and α = α(F) such that for any f ∈ F

(i) f is (C,α)-good on V .

(ii) ∇f is (C,α)-good on V .

Corollary 4.6. Let f1, f2, . . . , fn be analytic functions from a neighborhood U
of x0 in Qm

ν to Qν , such that 1, f1, f2, . . . , fn are linearly independent on any
neighborhood of x0. Then

(i) There exist a neighborhood V of x0, C & α > 0 such that any linear com-
bination of 1, f1, f2, . . . , fn is (C,α)-good on V .

(ii) There exist a neighborhood V ′ of x0, C ′ & α′ > 0 such that for any
c1, c2, . . . , cn ∈ Qν , ‖

∑n
k=1 ci∇fi‖ is (C ′, α′)-good on V ′.

We now recall the notion of skew gradient from [BKM01, Section 4]. For i = 1, 2
let gi : Qd

ν → Qν be two C1 functions. Define then ∇̃(g1, g2) := g1∇g2− g2∇g1.
This, in some sense, measures how far two functions are from being linearly
dependent. The following is the main technical result of section 4 in [MS08].
Let us remark that this theorem is responsible for the fact that the results of
this paper are in the setting of analytic functions rather than Ck functions.
In Archimedean case the proof of this fact uses polar coordinates which is not
available in non-Archimedean setting.

Theorem 4.7. (cf. [MS08, Theorem 4.7]) Let U be a neighborhood of x0 ∈ Qm
ν

and f1, f2, . . . , fn be analytic functions from U to Qν , such that 1, f1, f2, . . . , fn

are linearly independent on any open subset of U. Let F = (f1, . . . , fn) and

F = {(D1·F, D2·F+a)| ‖D1‖ = ‖D2‖ = ‖D1∧D2‖ = 1, D1, D2 ∈ Qn
ν , a ∈ Qν}.

Then there exists a neighborhood V ⊆ U of x0 such that

(i) For any neighborhood B ⊆ V of x0, there exists ρ = ρ(F , B) such that
supx∈B ‖ ∇̃g(x) ‖≥ ρ for any g ∈ F .

(ii) There exist C and α, positive numbers, such that for any g ∈ F , ‖∇̃g‖ is
(C,α)-good on V.

5 Theorem 1.5 and lattices

In this section we prove Theorem 1.5. This is done with the aid of converting
the problem into a question about quantitative recurrence properties of some
“special flows” on the space of discrete ZS̃-modules. This dynamical translation
was the breakthrough by Kleinbock and Margulis, see [KM98]. This point of
view was then followed in [BKM01], [KT07] and [MS08].

Until now we essentially worked with a single non-Archimedean place. From
this point on we need to work with all the places in S̃ = {∞}∪S, simultaneously.

10



Let us fix some further notation to be used in the sequel. Let d∞ = 0 and let
mν + dν + 1 for all ν ∈ S̃. We extend f in the statement of Theorem 1.5 to a
map on

∏
ν∈S̃ Qdν

ν by setting f∞ = 0 and continue to denote this map by f . Let
{e0ν , e∗1ν , . . . , e

∗dν
ν , e1ν , . . . , e

n
ν} be the standard basis for Qmν

ν . Let ei = (ei
ν)ν∈S̃

and define the ZS̃-module Λ to be the ZS̃-span of {e0, . . . , en}. For any x ∈ U
define

Ux =







1 0 fν(xν)
0 Idν

∇fν(xν)
0 0 In







ν∈S̃

Note that in the real place we have the identity matrix In+1. If 0dν
denotes the

dν × 1 zero block then one has

Ux







p
0dν

~q







ν∈S̃

=







p+ fν(xν) · ~q
∇fν(xν)~q

~q







ν∈S̃

.

Let ε > 0 be given. Define the diagonal matrix

D = (Dν)ν∈S̃ = (diag((a(0)
ν )−1, (a∗ν)−1, . . . , (a∗ν)−1, (a(1)

ν )−1, . . . , (a(n)
ν )−1))ν∈S̃

where a(0)
ν =

{
dδeν ν ∈ S
T0/ε ν = ∞ , a∗ν = dKνeν , a(i)

ν =

{
1 ν ∈ S
Ti/ε ν = ∞ 1 ≤ i ≤ n,

and for a positive real number a and ν ∈ S we let daeν (resp. bacν) denote a
power of pν with the smallest (resp. largest) ν-adic norm bigger (resp. smaller)
than a. The constants δ,Kν and Ti above are as in the statement of Theorem 1.5.

The following, which will be proved in section 6, proves Theorem 1.5.

Theorem 5.1. Let U and f be as in theorem 1.5; then for any x = (xν)ν∈S,
there exists a neighborhood V =

∏
ν∈S Vν ⊆ U of x, and a positive number

α with the following property: for any B ⊆ V there exists E > 0 such that
for any D = (diag((a(0)

ν )−1, (a∗ν)−1, . . . , (a∗ν)−1, (a(1)
ν )−1, . . . , (a(n)

ν )−1))ν∈S̃ with
1 ≤ |a(i)

∞ |∞, 0 < |a(0)
ν |ν ≤ 1 ≤ |a(1)

ν |ν ≤ · · · ≤ |a(n)
ν |ν for all ν ∈ S which satisfy

(i) 0 <
∏

ν∈S |a∗ν |ν ≤ |a(0)
∞ a

(1)
∞ · · · a(n)

∞ |−1
∞

∏
ν∈S |a(0)

ν a
(1)
ν · · · a(n−1)

ν |−1
ν .

(ii) 1 ≤ mini

∣∣∣ 1

a
(i)
∞

∣∣∣
∞

∏
ν∈S |a(0)

ν |−1
ν

and for any positive number ε, one has

|{y ∈ B| c(DUyλ) < ε for some λ ∈ Λ \ {0}}| ≤ E εα|B|.
Proof of Theorem 1.5 modulo Theorem 5.1. Choose ε as in Theorem 1.5 and
define a(i)

ν ’s, a∗ν and D as above. Our assumptions in Theorem 1.5 guarantee

that D satisfies the conditions above. Now if λ =







p
0dν

~q







ν∈S̃

is such

11



that (p, ~q) satisfies the conditions in (1.5) then we have c(DUyλ) < ε. Recall
that c(x) ≤ ‖x‖κ

S , now V and α/κ as in Theorem 5.1 satisfy conditions of
Theorem 1.5.

6 Proof of Theorem 5.1

In the previous section we reduced the proof of Theorem 1.5 to Theorem 5.1.
This section contains the proof of the latter. Theorem 5.1 is a far reaching quan-
titative generalization of recurrence properties of unipotent flows on homogenous
spaces. We refer to [KM98] for further discussion and complementary remarks.
Let us start with the following

Definition 6.1. (cf. [KT07, Section 6]) Let Ω be the set of all discrete ZS̃-
submodules of

∏
ν∈S̃ Qmν

ν . A function θ from Ω to the positive real numbers is
called a norm-like map if the following three properties hold:

i) For any ∆,∆′ with ∆′ ⊆ ∆ and the same ZS̃-rank, one has θ(∆) ≤ θ(∆′).

ii) For any ∆ and γ 6∈ ∆QS̃
, one has θ(∆ + ZS̃γ) ≤ θ(∆)θ(ZS̃γ).

iii) For any ∆, the function g 7→ θ(g∆) is a continuous function of
g ∈ GL(

∏
ν∈S̃Qmν

ν ).

Theorem 6.2. (cf. [KT07, Theorem 8.3]) Let B = B(x0, r0) ⊂
∏

ν∈S Qdν
ν and

B̂ = B(x0, 3mr0) for m = minν (mν). Assume that H : B̂ → GL(
∏

ν∈S̃Qmν
ν ) is

a continuous map. Also let θ be a norm-like map defined on the set Ω of discrete
ZS̃-submodules of

∏
ν∈S̃ Qmν

ν , and P be a subposet of Ω. For any Γ ∈ P denote
by ψΓ the function x 7→ θ(H(x)Γ) on B̂. Now suppose for some C,α > 0 and
ρ > 0 one has

(i) for every Γ ∈ P, the function ψΓ is (C,α)-good on B̂;

(ii) for every Γ ∈ P, supx∈B ‖ψΓ(x)‖S̃ ≥ ρ;

(iii) for every x ∈ B̂, #{Γ ∈ P| ‖ψΓ(x)‖S̃ ≤ ρ} <∞.

Then for any positive ε ≤ ρ one has

|{x ∈ B| θ(H(x)λ) < ε for some λ ∈ Λr {0}}| ≤ mC(N((dν),S)D
2)m(

ε

ρ
)
α
|B|,

where D may be taken to be
∏

ν∈S(3pν)dν , and N((dν),S) is the Besicovich con-
stant for the space

∏
ν∈S Qdν

ν .

The idea of the proof of Theorem 6.2 is very similar to Margulis’ proof of
recurrence properties of unipotent flows on homogenous spaces, but the proof
is more technical. We will prove Theorem 5.1 using this theorem. However we
need to set the stage for using this theorem.

12



The poset: let Λ be as in section 5 and let P be the poset of primitive ZS̃-
modules of Λ.
The norm-like map: For any ν ∈ S̃ we let I∗ν be the ideal generated by
{e∗iν ∧e∗jν for 1 ≤ i, j ≤ dν}. Note that I∗∞ = 0. Let πν :

∧
Qmν

ν → ∧
Qmν

ν /I∗ν be
the natural projection. For x ∈ ∏

ν∈S̃

∧∏
ν∈S̃ Qmν

ν define θ(x) =
∏

ν∈S̃ θν(xν)
where θν(xν) = ‖πν(xν)‖πν(Bν) and Bν is the standard basis of

∧
Qmν

ν . Finally
for any discrete ZS̃-submodule ∆ of

∏
ν∈S̃ Qmν

ν , let θ(∆) = θ(x(1) ∧ · · · ∧ x(r)),
where {x(1), . . . ,x(r)} is a ZS̃-basis of ∆. Using the product formula, it is readily
seen that θ(∆) is well-defined. This is our norm-like map.
The family H: Let H be the family of functions

H : U =
∏

ν∈S̃

Uν → GL(
∏

ν∈S̃

Qmν
ν ) where H(x) = DUx,

where D and Ux are as in Theorem 5.1.
Note that the restriction of θ to

∏
ν∈S̃ Qmν

ν is the same as the function c.
Hence Theorem 6.2 reduces the proof of Theorem 5.1 to finding a neighborhood
V of x which satisfies the following

(I) There exist C,α > 0, such that all the functions y 7→ θ(H(y)∆), where
H ∈ H and ∆ ∈ P are (C,α)-good on V.

(II) For all y ∈ V and H ∈ H, one has #{∆ ∈ P| θ(H(y)∆) ≤ 1} <∞.

(III) For every ball B ⊆ V, there exists ρ > 0 such that supy∈B θ(H(y)∆) ≥ ρ
for all H ∈ H and ∆ ∈ P.

If x ∈ ∏
ν∈S Qdν

ν define V =
∏

ν∈S Vν , where Vν is small enough such that
assertions of Corollary 4.6 and Theorem 4.7 hold. We now verify (I), (II), (III)
for this choice of V.

Proof of (I). Let ∆ be a primitive submodule of Λ and let k = rankZS̃
∆.

Denote by (D∆)ν the Qν-span of the projection of D∆ to the place ν ∈ S̃, note
that dimQν (D∆)ν = k. Let Wν (resp. W ∗

ν ) be the Qν-span of {e1ν , . . . , en−1
ν }Qν

(resp. {e∗1ν , . . . , e
∗dν
ν }). Let x(1)

ν , . . . , x
(k−1)
ν ∈ (D∆)ν ∩Wν ⊕ Qνe

n
ν be an or-

thonormal set, see section 2 for the definition in the non-arthimedean setting.
Complete this to an orthonormal basis for (D∆)ν ⊕Qνe

0
ν by adding e0ν and x(0)

ν

if needed. Let {y(1), · · · ,y(k)} be a ZS̃-basis for ∆. We have θ(D∆) = θ(DY),
where Y = y(1) ∧ · · · ∧ y(k). Let aν , bν ∈ Qν be such that

(DY)ν = aνe
0
ν ∧ x(1)

ν ∧ · · · ∧ x(k−1)
ν + bνx

(0)
ν ∧ · · · ∧ x(k−1)

ν .

If g(x) = (g1(x), g2(x)) for g1 and g2 two functions from an open subset of
Qdν

ν to Qν define ∇̃∗(g)(x) = g1(x)∇∗g2(x) − g2(x)∇∗g1(x) where ∇∗ḡ(xν) =∑dν

i=1 ∂iḡ(xν)e∗iν .

Let us also define f̂(x) = (f̂ν(xν))ν∈S , where

f̂ν(xν) = (1, 0dν ,
a
(1)
ν

a
(0)
ν

f (1)
ν (xν), . . . ,

a
(n)
ν

a
(0)
ν

f (n)
ν (xν)).
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Manipulation of the formulas gives

(DUxD−1)νw = w + (f̂ν(xν) · w)e0ν +
a
(0)
ν

a∗ν
∇∗(f̂ν(xν)w),

whenever w is in Wν ⊕Qνe
n
ν . Therefore we have

πν((H(x)Y)ν) = (aν + bν f̂ν(xν)x(0)
ν )e0ν ∧x(1)

ν ∧· · ·∧x(k−1)
ν + bνx

(0)
ν ∧· · ·∧x(k−1)

ν

+bν
k−1∑

i=1

±(f̂ν(xν)x(i)
ν )e0ν ∧

∧

s 6=i

x(s)
ν + bν

a
(0)
ν

a∗ν

k−1∑

i=0

±∇∗(f̂ν(xν)x(i)
ν ) ∧

∧

s 6=i

x(s)
ν

+
a
(0)
ν

a∗ν

k−1∑

i=1

±∇̃∗(f̂ν(xν)x(i)
ν , aν + bν f̂ν(xν)x(0)

ν ) ∧ e0ν ∧
∧

s 6=0,i

x(s)
ν (2)

+bν
a
(0)
ν

a∗ν

k−1∑

i,j=1,j>i

±∇̃∗(f̂ν(xν)x(i)
ν , f̂ν(xν)x(j)

ν ) ∧ e0ν ∧
∧

s 6=i,j

x(s)
ν .

The orthogonality assumption gives that the norm of the above vector would be
the maximum of norms of each of its summands. Hence we need to show each
summand is a good function. Note that there is nothing to prove in the case
ν = ∞. If ν ∈ S however our choice of V and conditions on f guarantee that we
may apply Corollary 4.6 and Theorem 4.7 hence each summand is (Cν , αν)-good
as we wanted.

Proof of (II). First line in Equation (2), gives that

θ(DUx∆) ≥
∏

ν∈S̃

max{|aν + bν f̂ν(xν) · x(0)
ν |, |bν |}

Thus θ(DUx∆) ≤ 1 implies that
∏

ν∈S̃ max{|aν |, |bν |} has an upper bound.
Hence Corollary 7.9 of [KT07] finishes the proof of (II).

Proof of (III). Let B ⊆ V be a ball containing x. Define

ρ1 = inf{|fν(xν) · Cν + c0ν |ν | x ∈ B, ν ∈ S,Cν ∈ Qn
ν , ‖Cν‖ = 1, c0ν ∈ Qν},

ρ2 = inf{sup
x∈B

‖∇fν(xν)Cν‖ |ν ∈ S,Cν ∈ Qn
ν , ‖Cν‖ = 1},

Further let M = supx∈B max{‖f(x)‖S , ‖∇f(x)‖S} and ρ3 be the constant ob-
tained by theorem 4.7(a).

Assume first that rankZS̃
∆ = 1. Hence ∆ can be represented by a vector

w = (wν)ν∈S , with wi
ν ∈ ZS̃ for all i’s and any ν ∈ S̃. Now

c(DUxw) ≥ min
i

∣∣∣∣
1

a
(i)
∞

∣∣∣∣
∞

∏

ν∈S

∣∣∣∣∣
w

(0)
ν +

∑n
i=1 f

(i)
ν (xν)w(i)

ν

a
(0)
ν

∣∣∣∣∣
ν

≥ ρκ
1 .
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The proof in this case is complete.
Hence we may assume rankZS̃

∆ = k > 1. With the notations as in part
(I) let x(1)

ν , . . . , x
(k−2)
ν be an orthonormal set in Wν ∩∆ν . We extend this to an

orthonormal set in (Wν⊕Qνe
n
ν )∩∆ν by adding x(k−1)

ν . Now if necessary choose
a vector x(0)

ν such that {e0ν , x(0)
ν , x

(1)
ν , . . . , x

(k−1)
ν } is an orthonormal basis for

∆ν +Qνe
0
ν Let Y = y(1)∧· · ·∧y(k) be as before. Since Dν leaves Wν ,W

∗
ν ,Qνe

0
ν ,

and Qνe
n
ν invariant, one has

θ(DUx∆) = θ(DUxY) =
∏

ν∈S̃

θν(DνUν
xYν) =

∏

ν∈S̃

‖Dνπν(Uν
xYν)‖ν .

Let aν , bν ∈ Qν be so that

Yν = aνe
0
ν ∧ x(1)

ν ∧ · · · ∧ x(k−1)
ν + bνx

(0)
ν ∧ · · · ∧ x(k−1)

ν .

Note that
∏

ν∈S̃{|aν |ν , |bν |ν} ≥ 1. Let f̌(x) = (f̌ν(xν))ν∈S̃ where

f̌ν(xν) = (1, 0dν , f
(1)
ν (xν), . . . , f (n)

ν (xν)).

We have

πν(Uν
xYν) = (aν + bν f̌ν(xν)x(0)

ν )e0ν ∧ x(1)
ν ∧ · · · ∧ x(k−1)

ν + bνx
(0)
ν ∧ · · · ∧ x(k−1)

ν

+bν
k−1∑

i=1

±(f̌ν(xν)x(i)
ν )e0ν ∧

∧

s 6=i

x(s)
ν + bν

k−1∑

i=0

±∇∗(f̌ν(xν)x(i)
ν ) ∧

∧

s 6=i

x(s)
ν

+e0ν ∧ Y̌ν(xν),

where Y̌ν(xν) =
k−1∑

i=1

±∇̃∗(f̌ν(xν)x(i)
ν , aν + bν f̌ν(xν)x(0)

ν ) ∧
∧

s 6=0,i

x(s)
ν

+bν
k−1∑

i,j=1,j>i

±∇̃∗(f̌ν(xν)x(i)
ν , f̌ν(xν)x(j)

ν ) ∧
∧

s 6=i,j

x(s)
ν .

Claim: For all ν ∈ S one has

sup ‖en
ν ∧ Y̌ν(xν)‖ν ≥ ρ0 ·max{|aν |ν , |bν |ν}.

Proof of the claim: Let ν ∈ S we have

en
ν ∧Y̌ν(xν) = ±z(∗)

ν (xν)∧en
ν ∧x(1)

ν ∧x(2)
ν · · ·∧x(k−2)

ν +
other terms where one
or two x(i)

ν are missing,

where
z
(∗)
ν (xν) = ∇̃∗(f̌ν(xν)xk−1

ν , aν + bν f̌ν(xν)x(0)
ν )

= bν∇̃∗(f̌ν(xν)xk−1
ν , f̌ν(xν)x(0)

ν )− aν∇∗(f̌ν(xν)x(k−1)
ν )
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The first expression implies that supxν∈Bν
‖z(∗)

ν (xν)‖ν ≥ ρ3 |bν |ν , and the second
expression gives supxν∈Bν

‖z(∗)
ν (xν)‖ν ≥ ρ2|aν |ν − 2M2|bν |ν . Thus there exists

ρ0 such that

max{ρ2|aν |ν − 2M2|bν |ν , ρ3 |bν |ν} ≥ ρ0 ·max{|aν |ν , |bν |ν}.

This shows the claim.
Let ν ∈ S be any place; then ‖Dν(en

ν ∧ Y̌ν(xν))‖ν ≤ ‖DνY̌ν(xν)‖ν/|a(n)
ν |ν .

Hence the smallest (in norm) eigenvalue of the action ofDν onW ∗
ν∧(

∧k−1(Qνe
0
ν⊕

Wν ⊕Qνe
n
ν )) is (a(∗)

ν a
(n−k+2)
ν · · · a(n)

ν )
−1
.

Let R = max{|a∞|,|b∞|}
|a(0)
∞ a

(1)
∞ ···a(n)

∞ |∞
we have

sup
x∈B

θ(DUxY) ≥ R
∏

ν∈S

‖Dν(e0ν ∧ Y̌ν(xν))‖ν ≥ R
∏

ν∈S

|a(n)
ν |ν‖Dν(en

ν ∧ Y̌ν(xν))‖ν

|a(0)
ν |ν

≥ R
∏

ν∈S

|a(n)
ν |ν‖en

ν ∧ Y̌ν(xν)‖ν

|a(0)
ν a

(∗)
ν a

(n−k+3)
ν · · · a(n)

ν |ν
≥

ρκ
0 max{|a|∞, |b|∞}
|a(0)
∞ a

(1)
∞ · · · a(n)

∞ |∞
∏

ν∈S

max{|a|ν , |b|ν}
|a(0)

ν a
(∗)
ν a

(n−k+3)
ν · · · a(n−1)

ν |ν
≥ ρκ

0 .

This finishes the proof of part (III).
As mentioned before now Theorem 6.2 completes the proof of Theorem 5.1.

7 Regular systems

In this section, we will prove Theorem 1.6 and will state a general result
about regular systems, Theorem 7.3. Through out this section, as we are work-
ing with only one place, we shall use U and f instead of U and f and they will
be as Theorem 1.1, and as before let f̃ = (f, 1). Let us first recall the definition
of a regular system of resonant sets. This is a generalization of the concept of a
regular system of points of Baker and Schmidt [BS70] for the real line.

Definition 7.1. (cf. [BBKM02, Definition 3.1]) Let U be an open subset of
Qd

ν , R be a family of subsets of Qd
ν , N : R → R+ be a function and let s be

a number satisfying 0 ≤ s < d. The triple (R, N, s) is called a regular system
in U if there exists constants K1,K2,K3 > 0 and a function λ : R+ → R+

with limx→∞ λ(x) = +∞ such that for any ball B ⊂ U and for any T > T0 =
T0(R, N, s,B) is a sufficiently large number, there exists

R1, . . . , Rt ∈ R with λ(T ) ≤ N(Ri) ≤ T for i = 1, . . . , t

and disjoint balls

B1, . . . , Bt with 2Bi ⊂ B for i = 1, . . . , t
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such that
diam(Bi) = T−1 for i = 1, . . . , t

t ≥ K1|B|T d

and such that, for any γ ∈ R with 0 < γ < T−1, one has

K2γ
d−sT−s ≤ |B(Ri, γ) ∩Bi|

|B(Ri, γ) ∩ 2Bi| ≤ K3γ
d−sT−s

where B(Ri, γ) is the γ neighborhood of Ri. Moreover the elements of R will
be called resonant sets.

The construction of the desired regular system, which in some sense is the main
result of this section, will make essential use of the following.

Theorem 7.2. Let U and f be as in statement of Theorem 1.2. In particular,
f is non-degenerate on U. Then, for any x0 ∈ U , there exist a sufficiently small
ball V ⊂ U centered at x0 and a constant C0 > 0 such that for any ball B ⊆ V
and any δ > 0, for all sufficiently large Q, one has

|Af (δ;B;Q)| ≤ C0δ|B|,
where

Af (δ;B;Q) =
⋃

q̃∈Zn+1:0<‖q̃‖∞≤Q

{x ∈ B| |q̃ · f̃(x)| < δQ−n−1}

Proof. Let V be an open ball about x0 such that the assertions of Theorems 1.4
and 1.5 hold. We will show V satisfies the conclusion of the theorem. For any
B ⊆ V and 0 < ε < 1/2, let

A1(δ;B;Q; ε) =
{
x ∈ B| ∃ q̃, ‖q̃‖∞ < Q,

|q̃ · f̃(x)|ν < δQ−n−1

‖q∇f(x)‖ν > |q̃|−ε
∞

}

and

A2(δ;B;Q; ε) =
{
x ∈ B| ∃q̃, ‖q̃‖ < Q : |q̃ · f̃(x)| < δQ−n−1

‖∇fν(x)q‖ν ≤ |q̃|−ε
∞

}
.

One obviously has A(δ;B;Q) ⊆ A1(δ;B;Q; ε)∪A2(δ;B;Q; ε). Now one applies
the bounds from Theorems 1.4 and 1.5 for |A1(δ;B;Q; ε)| and |A2(δ;B;Q; ε)|
respectively. These give

|A1(δ;B;Q; ε)| ≤ C1δ|B| and |A1(δ;B;Q; ε)| ≤ C2(δQ−ε)
α

n+1 |B|
where α > 0, C1 is a positive universal constant, and C2 = C2(B) is a positive
number, which just depends on B. Hence, for sufficiently large Q (depending on
B), the second expression can be made smaller than C1δ|B|, which completes
our proof.
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We are now ready to prove Theorem 1.6.
Proof of Theorem 1.6. Thanks to the non-degeneracy assumption, replacing
U with a smaller neighborhood, we may and will assume f1(x) = x1. Moreover,
we can choose B0 such that theorem 7.2 holds. Therefore the aforementioned
theorem will guarantee that for any B ⊂ B0, one has

|G(B; δ; Q)| ≥ 1
2
|B| (3)

for large enough Q, where

G(B; δ; Q) =
3
4
B \ Af (δ;

3
4
B; Q)

Let x ∈ G(B; δ; Q), applying a Dirichlet’s principle argument one gets an ab-
solute constant C such that for sufficiently large Q one can solve the following
system of inequalities:





|q · f(x) + q0|ν < Cδ2Q−n−1

|qi|∞ < δ−1Q i = 0, 1, . . . , n
|qi|ν < δ i = 2, . . . , n

This, thanks to the fact that x ∈ G((B; δ; Q)), implies that T = δ−n−1Qn+1

will satisfy Qn+1 ≤ N(Rq,q0) ≤ T.

First claim: Let (q, q0) satisfy the above system of inequalities. Define the
function F (x) = q · f(x) + q0, then one has |∂1F (x)|ν > δ

2 .

Assume the contrary so |∂1F (x)|ν ≤ δ
2 . This assumption gives |q1|ν < δ.

Now since we have |q ·f(x)+ q0|ν < Cδ2Q−n−1, if Q is sufficiently large, we will
have |q0|ν < δ. This says that we can replace (q, q0) by (q′, q′0) = 1

pl
ν
(q, q0) and

have {
|q′f(x) + q′0|ν < CδQ−n−1

|q′i|∞ < Q i = 0, 1, . . . , n

This however contradicts our assumption that x ∈ G((B; δ; Q)). Hence we have
that |∂1F (x)|ν > δ

2 . The first claim is proved.
Second claim: There exists z ∈ Rq,q0 such that |z − x|ν < 2CδQ−n−1, for
large enough Q.

Using uniform continuity and the ultrametric inequality we get that there
exists r1 > 0 such that if ‖x− y‖ν < r1 then |∂1F (y)|ν > δ

2 . As x ∈ 3
4B we have

B(x, diam B) ⊂ B. Define r0 = min(r1, diam B), so we have |∂1F (y)|ν > δ
2 for

all y ∈ B(x, r0).
Now if x = (x1, . . . , xd) and |θ|ν < r0 then xθ = (x1 + θ, x2, . . . , xd) ∈ B(x, r0).
Let g(θ) = F (xθ). Then

|g(0)|ν = |F (x)|ν < Cδ2Q−n−1 and |g′(0)|ν = |∂1F (x)|ν > δ

2
.
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We now apply Newton’s method, see [W98], and get: there exists θ0 such that
g(θ0) = 0 and |θ0|ν < 2CδQ−n−1. So if Q > 2C

δ1/n+1 then we have xθ0 ∈ B(x, r0).
Hence there is z ∈ Rq,q0 with |z − x|ν < 2CδQ−n−1.

Third claim: There is a constant K2 so that for any 0 < γ < T−1 we have

K1γT
−(d−1) ≤ |B(Rq,q0 , γ) ∩B(z, T−1/2)|

If d = 1 we are done by taking K1 = 1/2 so we assume d > 1. Let z =
(z1, . . . , zd) and z′ = (z2, . . . , zd) where z is as in second claim above. Now for
any y′ = (y2, . . . , yd) ∈ Qd−1

ν such that |y′ − z′|ν < C1T
−1 let y = (y1, y′) =

(y1, y2, . . . , yd) where y1 ∈ Qν . If |y1 − z1|ν ≤ T−1/4 then y ∈ B(z , T−1/4).
We now want to show that for any y′ with |y′ − z′|ν < C1T

−1 one can find
y1(y′) ∈ Qν such that y = (y1(y′), y′) ∈ Rq,q0 ∩ B(z, T−1/4). First note that
B(z, T−1) ⊂ B(x, r0). So if |y1(y′) − z1|ν < T−1/4 then (y1(y′), y′) ∈ B(x, r0).
This thanks to our previous observations gives |∂1F (y)|ν > δ/2. Now, as in the
proof of Theorem 1.4, we have

F (y) = F (z) +∇F (z) · (y − z) +
∑

i,j

ΦijF (yi − zi)(yj − zj).

Comparing the maximum of the norms using F (z) = 0 and |y′−z′|ν < C1T
−1 we

get that if |y1(y′)−z1|ν < T−1/4 then |F (y)|ν < T−1/4. Again Newton’s method
helps to find y1(y′) with |y1(y′)− z1|ν ≤ T−1/4 such that F (y1(y′), y′) = 0.
For any 0 < γ < T−1 define

A(γ) = {(y1(y′) + θ, y′)| ‖y′ − z′‖ν < C1T
−1, |θ|ν ≤ γ/2}

The above gives A(γ) ⊂ B(Rq,q0 , γ) ∩B(z, T−1/4). So an application of Fubini
finishes the proof of the third claim.

The proof of the theorem now goes as in [BBKM02], we recall the steps here
for the sake of completeness. Assume Q is large enough so that Theorem 7.2
holds. Choose a collection

(q1, q0,1, z1), . . . , (qt, q0,t, zt) ∈ (Zn \ {0})× Z×B with zi ∈ Rqi,q0,i

such that

Qn+1 = Tδn+1 ≤ N(Rqi,q0,i) ≤ T = δ−n−1Qn+1 (1 ≤ i ≤ t)

and such that for any γ with 0 < γ < T−1 we have

K2γT
−(d−1) ≤ |B(Rqi,q0,i , γ) ∩B(zi, T

−1/2)| (1 ≤ i ≤ t)

|B(Rqi,q0,i , γ) ∩B(zi, T
−1)| ≥ K3γT

−(d−1) (1 ≤ i ≤ t)

Now by our above discussion for any point x ∈ G(B; δ;Q) there is a triple

(q, q0, z) ∈ (Zn \ {0})× Z×B with z ∈ Rq,q0
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which satisfies the above claims. Since t was chosen to be maximal there is an
index i ∈ {1, . . . , t} such that

B(zi, T
−1/2) ∩B(z, T−1/2) 6= ∅

As a result we have ‖z − zi‖ < T−1/2. This together with the second claim
above gives ‖x− zi‖ < C2T

−1. Thus

G(B; δ;Q) ⊂
i=t⋃

i=1

B (zi, C2T
−1)

This inclusion plus (3) above give

|B|/2 ≤ |G(B; δ;Q)| ≤ t · |B(0, C2)|T−d

Therefore t ≥ K1|B|T d, where K1 = |2B(0, C2)|.
Now Ri = Rqi,q0,i

and Bi = B(zi, T
−1/2) serve as the resonant sets and the

desired balls in the definition 7.1. This finishes the proof of Theorem 1.6.

The following is a general result on regular systems which is Theorem 4.1
in [BBKM02]. The proof in there is only given for Rd however the same proof
works for Qd

ν and we will not reproduce the proof here.

Theorem 7.3. (cf. [BBKM02, Theorem 4.1])
Let U be an open subset of Qd

ν , and let (R, N, S) be a regular system in U. Let
Ψ̃ : R+ → R+ be a non-increasing function such that the sum

∞∑

k=1

kd−s−1Ψ̃(k)d−s

diverges. Then for almost all points x ∈ U the inequality

dist(x,R) < Ψ̃(N(R))

has infinitely many solutions R ∈ R.

8 Proof of the main theorems

We finally come to the proof of Theorems 1.1 and 1.2.

8.1 Proof of the convergence part

Take x0 ∈ U. Choose a neighborhood V ⊆ U of x0 and a positive number
α, as in theorem 1.5, and pick a ball B =

∏
ν∈S Bν ⊆ V containing x0 such

that the ball with the same center and triple the radius is contained in U. We
will show that B ∩Wf ,Ψ has measure zero. For any q̃ ∈ Zn+1 \ {0}, let

Aq̃ = {(xν)ν∈S ∈ B| |(fν(xν)) · q̃|S < Ψ(q̃)}.
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We need to prove that the set of points x in B which belong to infinitely many
Aq̃ for q̃ ∈ Zn+1 \ {0} has measure zero. Now let

A≥q̃ = {x ∈ Aq̃| ‖∇fν(xν)q‖ν ≥ |q̃|−ε
∞ } &

A<q̃ = Aq̃ \A≥q̃.

Furthermore for any t ∈ N let

Ā≥t =
⋃

q̃∈Zn+1,2t≤‖q̃‖∞<2t+1 A≥q̃ & Ā<t =
⋃

q̃∈Zn+1,2t≤‖q̃‖∞<2t+1 A<q̃

Recall that Ψ is non-increasing. Hence using theorem 1.4, with

2t ≤ ‖q̃‖∞ ≤ 2t+1 and δ = 2t(n+1)Ψ(2t, . . . , 2t),

we see that |Ā≥t| ≤ C2t(n+1)Ψ(2t, . . . , 2t). Now a use of Borel-Cantelli lemma,
gives that almost every x ∈ B is in at most finitely many sets A≥q̃.

We will be done if we show that the sum of the measures of Ā<t’s is conver-
gent. The conditions posed on Ψ imply easily that Ψ(q̃) ≤ ‖q̃‖−(n+1)

∞ for large

enough ‖q̃‖∞. So if 2t ≤ ‖q̃‖∞ < 2t+1 then Ψ(q̃) ≤ 2−t(n+1) for large enough
t. Now for such t we may write Āt = ∪ν∈SĀt,ν where each Āt,ν is contained in
the set defined in 1.5, with δ = 2−t(n+1), Ti = 2t+1, Kν = 2−εt and Kω = 1
for ω ∈ S \ {ν}. It is not hard to verify the inequalities in the hypothesis of
theorem 1.5. Moreover, one has

εn+1 = max{δn+1, δκT0 · · ·Tn

∏

ν∈S

Kν} = 2−εtδκT0 · · ·Tn = C ′2−εt,

for some universal constant C. So by theorem 1.5 and the choice of V and B
measure of Āt is at most

C2
−αεt

κ(n+1) |B|.
Therefore the sum of measures of Āt’s is finite, thus another use of Borel-Cantelli
lemma completes the proof of Theorem 1.1.

8.2 Proof of the divergence part.

Replacing U by a smaller neighborhood, if needed, we assume that Theo-
rem 1.6 holds for U. Define now the sequence

Ψ̃(x) = x−n/(n+1)ψ(x1/(n+1))

As ψ was non-increasing we get that Ψ̃ is non-increasing as well, and we have
∞∑

k=1

kd−s−1Ψ̃(k)d−s =
∞∑

k=1

Ψ̃(k) =
∞∑

`=1

∑

(`−1)n+1<k≤`n+1

Ψ̃(k) ≥

∞∑

`=1

∑

(`−1)n+1<k≤`n+1

`−nψ(`) ≥
∞∑

`=1

ψ(`) = ∞
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Now Theorem 7.3 says, for almost every x ∈ U there are infinitely many elements
(q, q0) ∈ Zn × Z satisfying

dist(x,Rq,q0) < Ψ̃(‖q̃‖n+1
∞ ) (4)

this says, there is a point z ∈ Rq,q0 such that

‖x− z‖ν < Ψ̃(‖q̃‖n+1
∞ ).

We have

F (x) = F (z) +∇F (x) · (x− z) +
∑

i

Φij(F )(ti, tj) · (xi − zi)(xj − zj).

Recall that we have ‖q̃‖ν ≤ 1, ‖∇f‖ν ≤ 1, |Φi,j(f)|ν ≤ 1 and F (z) = 0. Hence
we get

|q̃ · f(x)|ν = |F (x)|ν ≤ ‖x− z‖ν < Ψ̃(‖q̃‖n+1
∞ ) = ‖q̃‖−n

∞ ψ(‖q̃‖∞) = Ψ(q̃) (5)

Note that for almost every x ∈ U there are infinitely many (q, q0) ∈ Zn × Z,
which satisfy (4). So we get that for almost every x ∈ U there are infinitely
many (q, q0) ∈ Zn × Z satisfying (5). This completes the proof of Theorem 1.2.

9 A few remarks and open problems

1. In this article, we worked with product of non-degenerate p-adic analytic
manifolds. However most of the argument is valid for the product of non-
degenerate Ck manifolds. The only part in which we use analyticity extensively
is in the proof of Theorem 4.7.

2. The divergence result in here was obtained for the case S is a singleton
only. However the convergence part of this paper which gives the simultaneous
approximation should be optimal and the divergence should hold in the more
general setting of the simultaneous approximation as well.

3. We considered measured supported on non-degenrate manifolds in here.
There are other natural measures that one can consider. Indeed D. Y. Kleinbock,
E. Lindenstrauss, B. Weiss in [KLW04] proved extremality of certain non-planar
fractal measures. It is interesting to prove a Khintchine type theorem for fractal
measures.
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