QUANTITATIVE EQUIDISTRIBUTION AND THE LOCAL
STATISTICS OF THE SPECTRUM OF A FLAT TORUS

E. LINDENSTRAUSS, A. MOHAMMADI, AND Z. WANG

Dedicated with admiration and gratitude to Peter Sarnak on occation of his 70th birthday

ABSTRACT. We show that pair correlation function for the spectrum of
a flat 2-dimensional torus satisfying an explicit Diophantine condition
agrees with those of a Poisson process with a polynomial error rate.

The proof is based on a quantitative equidistribution theorem and
tools from geometry of numbers.
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1. INTRODUCTION

Let A C R? be a lattice. The eigenvalues of the Laplacian of the corre-
sponding flat torus M = R? /A are the values of the quadratic form

(1.1) Bu(x,y) = 47? ||xv1 + yvo||®
at integer points, where {v1,va} is a basis for the dual lattice A*.
Let
0:)\0<)\1§/\2-”

be the corresponding eigenvalues counted with multiplicity. By the Weyl’s
law we have

#{j N < T~ M
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The set of eigenvalues has a clear symmetry; let us write j ~ kif \; = Bm(u)
and Ay = Bu(z£u). Let a < 8, and define the pair correlation function

T
The following was proved by Eskin, Margulis, and Mozes [EMMO05].

1.1. Theorem ([EMMO5], Theorem 1.7). Let M be a two dimensional flat
torus, and let

RM(Q7,87T) =

Bum(x,y) = ax® + 2bxy + cy?
be the associated quadratic form giving the Laplacian spectrum of M, nor-
malized so that ac — b? = 1. Suppose there exist A > 1 such that for all
(p1,p2,q) € Z3 with q > 2, we have

b —A
12) R e
Then for any interval o, B] with 0 ¢ [a, B], we have
(1.3) lim Ru(a, 8,T) = 72(8 — a).
T—o00

Prior to [EMMO5], Sarnak [Sar97] showed that (1.3) holds on a set of
full measure in the space of flat tori. The case of inhomogeneous forms,
which correspond to eigenvalues of quasi-periodic eigenfunctions, was also
studied by Marklof [Mar03, Mar02], and by Margulis and the second named
author [MM11]. More recently, Blomer, Bourgain, Radziwill, and Rudnick
[BBRIR17] studied consecutive spacing for certain families of rectangular
tori, i.e., b = 0. We also refer to the work of Strémbergsson and Vishe [SV20)]
where an effective version of [Mar03] is obtained.

In this paper, we prove a polynomially effective version of Theorem 1.1,
i.e., we provide a polynomial error term for Ry (a, 3,T).

1.2. Theorem. Let M be a two dimensional flat torus,
B (x,y) = ax® 4 2bxy + cy?

the associated quadratic form giving the Laplacian spectrum of M normalized
so that ac — b% =1, and let A > 103. Then there are absolute constants &g
and N, some A’ depending on A, and C and Ty depending on A, a, b, and
¢, and for every 0 < 0 < dp, a k = K(0, A) so that the following holds.

Let T > Ty, assume that for all (p1,p2,q) € Z3 with T < ¢ < T9 we
have

b —A
(1.4) i Rl Fd A
Then if
‘RM(aaﬁaT) - 7T2(5 - Oé)| > C(]' + |Oé| + |ﬁ’)NT_Ra

then there are two primitive vectors ui,us € Z? so that

(1.5) lurll, [l < T4 and  |Bu(ur,ug)] < T~
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and moreover

Rwm(e, B,T) — ﬂz(ﬁ —a) =
with

Mrp(ui, ug _
W222) 4 01+ Jal + 18T )
f1uq £ lousy € ZQ,
MT(ul,uz) = # (51,€2) S %ZQ : B|\/|(€1U1 :EEQUQ) < T,
4B (u1, ug)lits € |, ]
Note that our result does not require the assumption that 0 ¢ [a, ] (a
restriction that appears in the work of Eskin, Margulis and Mozes, and is
needed in order for Theorem 1.1 to hold). The proof of Theorem 1.2 is

effective, and for all of the above implicit constants, one can give explicit
expressions if desired.

Remark. Let us now elaborate on the term My (uy,u2) in the statement of
Theorem 1.2: Let u1,us € Z? be two primitive vectors satisfying

0 < luil] <T°* and |Bm(ui,uz)] < T
Then for all ({1, ¢2) € 372, we have
Bm(l1uy + loug) — Bm(biuy — loug) = 4Byv(u1, ug)l1ls.
In particular, if T77'° < |By(ui,u2)| < T, then there would be >

T1=1099 pairs of integer 1, £ of size < 72(1-9) (so that By (1ug+loug) < T),
such that

bily € [4BM(?/417U«2), 4BM((1XL1,U2)]
as the last interval is of length > T'79. All such pairs contribute to
My (u1,uz2), making w > T719 which is bigger than any fixed poly-
nomial error term. Moreover, even if (1.4) holds, such pairs uy,us € Z? can
definitely exist.

If (1.4) holds, up to changing the order such a pair uj,us is unique —
see Lemma 2.5 — hence there is no need for additional error terms. The
subspaces of R* spanned by pairs (u1,u2) as above are called exceptional.
In Section 6 we introduce a Margulis function that accounts for the all
contributions towards pairs Ry out of exceptional spaces and show that
exceptional subspaces are the only source of large error terms.

We now state a corollary of Theorem 1.2. A rectangular torus has extra
multiplicities in the spectrum built in, so to accommodate that we consider
the modified pair correlation function

_#HGR) A F M <T, a <X — A < B}
T .
1.3. Corollary. Let M be a two dimensional flat torus, and let

Bum(x,y) = ax® 4 2bxy + cy?

Ry(e, 8,T)

be normalized so that ac — b% = 1.
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(1) Suppose there exist A > 1 and q > 0 such that for all (m,n, k) € Z3\{0},
(1.6) lam + bn + ck| > ¢||(m,n, k)| 7.
Then
|[Bu (. 8,T) = 72(8 — a)| < C(L+ |a| + |BYVT .

(2) Let M be a rectangular torus, i.e., b = 0. Assume there exist A > 1 and
q > 0 such that for all (m,n) € Z*\ {0} we have

ja%m + | > g | (m,n)| .

Then
|Ri(e, 8,T) = (8 — )| < C(L+ o] + [B)YT".
Where N is absolute, k depends on A, and C depends on a, b, c, A, and q.

Indeed, under (1.6), pairs uj,ug of primitive integer vectors as in Theo-
rem 1.2 do not exist, and if M is a rectangular torus the unique (up to order)
pair of primitive vectors is given by e; = (1,0),e2 = (0,1), for which the
contribution of M7 (eq,ez) can be accounted for by looking at Ry,(a, 3,T)
instead of Ruw(a, 5,T).

Note that in part (2), though the modified pair correlation function
Ry, (a, 8,T) avoids counting zero values, the interval [, 8] is still allowed
to contain 0. This is slightly stronger than assuming 0 ¢ [«, 5], as Corol-
lary 1.3.(2) in particular gives effective bounds on the number of extremely
close eigenvalues.

The general strategy of the proof of Theorem 1.2 is similar to [EMMO98|
and [EMMO5]. That is, we deduce the above theorems from an equidis-
tribution theorem for certain unbounded functions in homogeneous spaces.
Unlike [EMMO98] and [EMMO5], where the analysis takes place in the space
of unimodular lattices in R*, the homogeneous space in question here is

X = SLQ(R) X SLQ(R)/P/

where I" is a finite index subgroup of SLy(Z) x SLa(Z).

This reduction is carried out in §3. The lower bound estimate will be
proved using the following effective equidistribution theorem that relies
on [LMW22, Thm. 1.1]:

Let G = SL2(R) x SLa(R). For all h € SLy(R), we let A(h) denote the
element (h,h) € G, and let H = A(SLy(R)). For every ¢t € R and every
6 € [0,2n], let

(et 0 nd _ (cosf —sinf
U=\ et a "0 = \sin® cosh )
1.4. Theorem. Assume I' is an arithmetic lattice in G. For every xg €

X =G/T, and large enough R (depending explicitly on X and the injectivity
radius at xg), for any e > RP, at least one of the following holds.
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(1) For every ¢ € C°(X) and 2m-periodic smooth function & on R, we have

2 2m
[ ama)e@)as - [ c@)a0 [ pamy] < S@sE©R™
0 0
where we use S(+) to denote an appropriate Sobolev norm on both X and
R, respectively.
(2) There ezists v € X such that Hx is periodic with vol(Hz) < R, and

dx(z,z9) < RPPet,

The constants D and kg are positive and depend on X but not on xg, and
dx 1s a fived metric on X.

This is a variant of [LMW22, Thm. 1.1]. Indeed, instead of expanding an
orbit segment of the unipotent flow A(us) where

(1 s
Ys=1o0 1)

here we expand an orbit of the compact group {A(rg)}. The deduction of
Theorem 1.4 from [LMW22, Thm. 1.1] is given in §5 using a fairly simple
and standard argument.

To prove the upper bound estimate, in addition to Theorem 1.4, we also
need to analyze Margulis functions a la [EMM98, EMMO05]; our analysis
simplifies substantially thanks to simpler structure of the cusp in SLa(R) x
SL2(R)/T” compared to that in SL4(R)/SL4(Z). This is the content of §6.
Indeed Proposition 6.1 reduces the analysis to special subspaces, see Defi-
nition 2.3, that are closely connected to the pairs of almost By-orthogonal
vectors discussed above. We study these special subspaces using the elemen-
tary Lemma 2.2; in particular, using this lemma we establish Lemma 2.4,
which shows that under (1.4) there are at most two special subspaces. Fi-
nally, Lemma 2.6 shows that even for special subspaces, only the range
asserted in (1.5) can produce enough solutions to affect the error term.
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versations. We also thank the anonymous referee for valuable comments.
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2. NOTATION AND PRELIMINARIES

In this paper

G:{(gol ;):gl,QQESLQ(R)} and H:{(ﬁ 2):g€SL2(R)}.

Let g = Lie(G) and h = Lie(H).
We identify G with SLo(R) x SLy(R) and H with

{(9,9) : g € SLa(R)} C SLa(R) x SLa(R).

Indeed, to simplify the notation, we will often denote

g1 0
g= (0 92> ed

by (g1, g2). Given v = (x1,y1,x2,y2) € R*, we write g.v = (g1v1, gava) where
v; = (X;,yi) € R for i = 1,2 (for purely typographical reasons, we prefer
to work with row vectors even though representing these as column vectors
would be more consistent).

For all h € SLa(R), we let A(h) = (h,h) € H. In particular, for every
t € R and every 6 € [0,27], A(at) and A(rg) denote the images of

et 0 q cosf —sinf
0 et an sinf cos@

2.1. Quadratic Forms. Let Qg denote the determinant form on R*:

in H, respectively.

Qo(x1,Y1,%2,¥2) = X1y2 — X2Y1.

Note that H = G N SO(Qo).
Let A C R? be a lattice and let A* be the dual lattice. We normalize A*
to have covolume (27)~2 and fix gy € SLa(R) so that

2rA* = gMZQ.
The eigenvalues of the Laplacian on R2/A are ||v||? for v € 2nA*. Therefore,
given two eigenvalues \; = ||v]|?, i = 1,2, we have
2.1) A= Ao = ([[or]]? = [loall*) = (v1 +v2) - (01 = v2)
' = Qo(v1 + v2,w(v1 — v2))
-1
where w = 1 0

Recall that G = SLy(R) x SLy(R) C SL4(R). Define
A = {(v1 4+ v2,w(v1 — 1)) vy, vp € Z2} C RL
Then {(v1 + v2,w(v1 —v2)) : v1,v2 € 2TA*} = (gm, —wgmw)A.
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Let I be the maximal subgroup of SLa(Z) x SLao(Z) which preserves A.
More explicitly,
I = {(71,72) € SL2(Z) x SL2(Z) : 1 = wysw (mod 2)}.
Let X = G/TI".
Moébius transformations. In this section, we prove an elementary lemma
concerning Mobius transformations. This lemma will be used to complete

the proof of Lemma 2.5; it also will be used in the proof of Lemma 6.4.
Let P denote the set of primitive vectors in Z2. For every t > 1, let

Pt)={veP:|v|<e}.
2.2. Lemma. Let A > 103, s > 0 and 0 < n* < e=3/190_ Assume that for
i =1,2 there are v;, v}, v € P(s) satisfying
(2.2) 1< |Qo(v,w)| < 4, for v,w € {v;, v}, vl'}.
Also suppose there are h € PGLa(R) and C > 0 so that
(2.3) hvy = pvg +wy o, hvy = p'vh + w’m, hof = vy 4wy 2
where |l 1], 11"] > C and ] < Cne™ for w € {wr0,w} w5},
Then there exists Q € Mata(Z) with ||Q| < n~!% and A\ € R so that
Ih = AQI < C'p=,
where C" depends on C and polynomially on ||h]|.

Proof. Let us write v; = (x;,y5), v; = (X}, y;), and v/ = (x},y/). The matrix

—X v —xqy!!

My= (1 T for z; = XL
1 — 1 1Y17 %Y1

Y12 X1Z X1y1 XY

acting on P! takes (x1 : y1) to (0: 1), (x; : ;) to (1:0) and (x{ : y{) to
(1:1). The matrix
My = %572 X for zy = 3Y2=X2Ys
—vhza yo X3Yo—X5Y5
in turn takes (0 : 1) to (x2 :y2), (1:0) to (x5 :y5) and (1 : 1) to (x5 : y5).
By (2.2), we have that r = |det(M;)det(My)|™" is a rational number of
height < 720, Thus by (2.3)

h = :t\/;Mng + O(T}Aﬁso) or
h=+F <(1) _01) MaM; + O(nA=59).

Since the denominators of the entries of M; and My are bounded by 14,
and since all our implicit constants are allowed to depend on ||h||, we may
conclude the claim. ]

We draw some corollaries of Lemma 2.2.
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Definition 2.3. Let g = (g1, g2) € G. A two dimensional gZ*-rational linear
subspace L C R* is called (p, A, t)-exceptional if there are (vy,0), (0,vs) € Z*
satisfying

(2.4) lgrvi]l, |lg2v2]| < €’ and  |Qo(g1v1, gave)| < e~

so that L N gZ* is spanned by {(g1v1,0), (0, gova)}.
Given a (p, A, t)-special subspace L, we will refer to {(g1v1,0), (0, gov2)}
as a spanning set for L.

2.4. Lemma. Let A > 103, and let g = (g1,92) € G. Let p < A/100. Then

for all t large enough, depending on ||g||, at least one of the following holds:

(1) There are at most two different (p, A, t)-exceptional subspaces.

(2) There exists Q € Maty(Z) whose entries are bounded by 't and A € R
satisfying Hg;lgl — )\QH < e~ (A-100)pt

Proof. We begin by proving the first assertion in the lemma. Let n = e~ #!
and s = pt. Indeed assume there are three different (p, A,t)-special sub-
spaces in R*, and let v;, v}, v/ € Ps, i = 1,2, be the corresponding spanning
vectors. Then

1 < |Qo(v,w)| < e**, for v, w € {vy, v}, v]}
That is, {vy,v], 0]} satisfies (2.2) with 7 = ™! so long as t is large enough
to account for the implied constant. Moreover, if we put h = g, 191, then
hvy = pvg + w2

where ;1 € R satisfies || > 1 and [|wy || < e=47* = p(A=1e= (recall that
the implicit constants in these inequalities are allowed to depend polynomi-
ally on ||g1]| and |/g2||). Similarly,

/ /1! / " ", " 1
hvy = vy +wy o and  huy = pivy +wiy

where p/, u" € R satisfy |¢/|,|p”| > 1 and lel,Z w/1/,2H < e~4°t There-
fore, {va, vh, vy} also satisfy (2.2). Moreover, h = g, ‘g1 satisfies (2.3) with
A —1, n, and s, in view of the above discussion. Hence, Lemma 2.2 im-
plies that the assertion in part (2) of this lemma holds so long as ¢ is large

enough. ([

)

Special subspaces and the spectrum of flat tori. Using the discussion
in §2.1, we translate the conclusion of Lemma 2.4 to a similar statement
about the quadratic form By.

2.5. Lemma. Let A > 10%, and let p < A/100. Recall that
B (x,y) = ax® + 2bxy + cy?

is renormalized so that ac —b? = 1. Then for all t > to, depending on p, |al,
|b|, and |c|, at least one of the following holds:
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(1) There is a unique, up to change of order, pair of primitive vectors
uy,ug € 72\ {0} satisfying
lugl| < e”  and |Bu(u,ug)| < e

(2) There exists Q € Mato(Z) whose entries are bounded by 1%t and A € R

satisfying
a b
I3 ¢) -

In particular, if M is a rectangular torus, i.e., b = 0, then ty may be
chosen so that if part (2) is not satisfied, then (up to changing the order)
up = (1,0) and ug = (0,1).

Proof. Let t1 be large enough so that Lemma 2.4 holds for all £ > ¢;. Since
By is positive definite, there exists t{, so that if ¢ > ¢, then

< ¢ (A=100)pt

|Bm(u1,u)| < e~ 47

implies that {u1,us} is linearly independent.
Let to = max(t1, 1) and let ¢ > to. Put

o=t 9

Note that if part (2) in Lemma 2.4 holds, then part (2) in this lemma holds
and the proof is complete. Thus let us assume that part (1) in Lemma 2.4
holds.

Let u; = (x;,y;) € Z*\ {0}. Then

. a b X9
Bm(ui,u2) = (x1,y1) (b c> (y2>
= (ax1 + by1)xa + (bx1 + cy1)y2

(2 2) ()~ (32) = ulantsm. (.

Thus if uy, us satisfy part (1)7 then (gl (X17YI)7 (07 O)) and ((070)7 (_YQ7X2))
span a (p, A, t)-special subspace for gZ*.
By Lemma 2.4, there is at most two such subspaces. Moreover, since
Bm( , ) is symmetric, we conclude that
Qo(91(x2,y2), (=y1,x1)) = Qolg1(x1,y1), (—y2,%2))-

This implies the two special subspaces are spanned by

{(gl(xla yl)v 0, 0)7 (07 0, _y2>x2)} or {(gl(x27 Y2>, 0, 0)7 (07 0, _y1,X1)}~

This shows part (1) in this lemma holds.
Assume now that b = 0, and suppose part (2) does not hold. Let u; be
as in part (1). Then

(2.5) |Bm(u, uz)| = |axixe +a tyrys| < em
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Unless y1y2 = 0, the above contradicts that part (2) does not hold. There-
fore, we have y1ys = 0. Assuming t is large enough so that the right side
in (2.5) is < |al, we conclude x;x2 = 0 and the claim follows. O

The following lemma further investigates the contribution of special sub-
spaces, or more precisely, vectors ui, us satisfying part (1) in Lemma 2.5.
We note that condition (2.6) is (1.5) in Theorem 1.2.

2.6. Lemma. Let A > 103 and 0 < p < 1/(1004). Let
Bum(x,y) = ax® + 2bxy + cy?

which is normalized so that ac — b?> = 1. The following holds for all large
enough t, depending on p, |a|, |b|, and |c|. Let ui,us € Z?\ {0} satisfy

;|| < et and | Bm (g, up)| < e=4°%,
Assume further that
(2.6) | B (u1, uz)| > el 722000,
Let C > 0, then

0] < Cet
01,0 172 . 6] <
# {( 1) €3 4Bm(u1,u2)l1ls € [a, O]

where the implied constant depends on C, a, b, and c.
Proof. Let (¢1,05) satisfy that |¢;| < Ce! and
(2.7) 4Bwm(u1,u2)l1ls € |, B].

Then the number of solutions with /1 = 0 or 5 = 0 is < e'. Therefore, we
assume ¢; # 0 for ¢ = 1,2 for the rest of the argument.
Assume that

} « max(la, 8]}

| Bm (w1, ug)| > e(=2+2p)t
Then (2.7) implies that
(2.8) 0 < 4|0145] < max(|al, |B])e@27",
The number of (¢1,0s) € Z? with 0 < |¢1| < Ce! so that (2.8) holds is
< max(|a| , [8])te® " < max(|al,|8])e@ )

as we claimed. O

3. CIRCULAR AVERAGES AND VALUES OF QUADRATIC FORMS

In this section, we state an equidistribution result for the action of SO(Qo).
Theorem 1.2 will be deduced from this equidistribution theorem in §4 using
some preparatory lemmas which will be established in this section.

Let f; be compactly supported bounded Borel functions on R?, and define
fon R by f(wr,ws) = fi(w1)fa(ws). For any ¢’ € G, let

(3.1) flgT)y= > flv)

’Ueg/Anz
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where

A ={(v1 +vo,w(vy —v2)) 11,03 € Zz} c R%,

Apy = {(wy,wz) € A:wy # 0 and we # 0}

I = {(71,72) € SL2(Z) x SL3(Z) : 1 = wysw (mod 2)},
and w = ((1) _01> Note that I preserves A and A,,.

Let X = G/I”, and let mx denote the G-invariant probability measure
on X.

3.1. Theorem. For every A > 10* and 0 < p < 107%, there exist A (de-
pending on A) and 81,02 (depending on p and A) with
p/A < 61/A < p/100,

so that for all g = (g1,92) € G and all large enough t, depending linearly on
log(||g:ll), the following holds.

Assume that for every @ € Mata(Z) with ePtlA < QI < et and all
A € R, we have
(3:2) lgz o = 2Q| > Q="

There exists some C' depending on A and polynomially on | g;|| so that the
following holds. For any 2m-periodic smooth function £ on R, if

[ iaamari@ao- [eas [ famy| > csseet

then there are at least one, and at most two, (61/A, A,t)-exceptional sub-
spaces, say L and L' (for notational convenience, if there is only one excep-
tional subspace, set L' = L). Moreover

2

27
F(A(asrg)gl)E(0) Ao = /D €do /X fdmy
+ M+ O(S(f)S(&)e ")

0

where
M= [ hus0)ao
with
fo® = S fAr)
vEGAN(LUL’)

C= {9 € [0,27] : fop(0) > e(m}

The proof of Theorem 3.1 will be completed in §7; it relies on results in
§5 and §6. Notice that, even though the functions f;, f2 are bounded on R?,
the resulting function f is unbounded on G/T”. Tt is well-recognized that
such unboundedness can be overcome with the use of cusp functions and
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their contracting functions, see e.g [EM22]. The adaptation of this method
to our setting where exceptional subspaces are present will be contained
in §6.

The goal in the remaining parts of this section and §4 is to complete the
proof of Theorem 1.2 using Theorem 3.1. We will also explicate the proof
of Corollary 1.3 at the end of §4.

Before proceeding, however, let us record an a priori, i.e., without assum-

ing (3.2), upper bound for f027r F(A(agrg)gl”) do.

3.2. Lemma. For every 0 < n < 1, there exists t,, < |logn| so that the
following hold. Let g = (g1,92) € G and R > 1; assume that ||g;|| < R. Let
fi be the characteristic function of {w € R? : |w|| < R}, and put f = f1fo.

(1) For everyt > t, we have
2T

f(A(asrg)gl) df < €™
0
(2) Let t > t,. Let L C R* be a two dimensional subspace so that L N gZ*
is spanned by {(g1v1,0), (0, g2v2)} for (v1,0),(0,v2) € Z*\ {0}. Then

/ fr(0)d < =M1
[0,2#}\CL

where f1,(0) = > veghnnr f(Alarg)v) and
Cr={0¢€0,2n] : fr(0) > e}
The implied constants depend polynomially on R.

We postpone the proof of this lemma to the end of §6. Part (1) in this
Lemma should be compared with [EMM98, Lemma 5.13]; indeed in loc. cit.
the integral appearing part (1) in Lemma 3.2 is bounded by O(t) (vs. e°®)
that we give here) which is sharp. The above however suffices for our needs.

3.3. A linear algebra lemma. The goal in the remaining parts of this
section is to relate the circular integrals as appear in Theorem 3.1 to the
counting problem in Theorem 1.2. This is the content of Lemma 3.4 which
should be compared with [EMMO98, Lemma 3.6] and [EMO01, Lemma 3.4].
We will also establish a certain upper bound estimate in Lemma 3.9 which
will be used in the proof of Theorem 1.2.

Let us begin by fixing some notation which will be used in Lemma 3.5
and Lemma 3.4. Let a < 8, R > max{l,|a|,|B]}, R~! < ¢ < R, and
0 <e< R™* Let o:R — [0,1] be a smooth function supported on
[¢ —€,q]. Let fi be a smooth function on R? satisfying
(3.3) 155100 - o(y) < filoy) S Liceee eae2) () 0();

272

we chose p and f; so that their partial derivatives are < g e~ 19.
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For an interval I = [a,b] and § > 0, put
Is=la—6,b+6]D1I
(3.4)
I s=[a+db-6]CI.

Given two intervals I C [~R2,R?) and I' C [0, R], let fr,r be a smooth
function with partial derivatives <« ¢719 satisfying

(3.5) Loy (%) - 1y (ly]) < fre(xy) < e (x) - e (lyl),

where we write I®) = I, ps. (in the formula above we used k = 1,2, but
later also larges values of k will be used).

For any function h on R?, define

Ints) = [ hixy)dx
R
Note that if f; is as in (3.3), then

(3.6) Jp(y) = o(y)(e + O(€%))

Let fi be as above (for this ¢ and some p) and let fo = fr, 1, (for Iy =
[~¢~'B, —q 'a] and some I; C [0, R]). Define f on R* by

f(v1,v2) = fi(v1) fa(ve).

We will work with a slight variant of polar coordinates in R?: 0 # w € R?
is denoted by (0y, ||w]||) where 6,, € [0, 27] is so that rg, w = (0, ||w]|).

3.4. Lemma. Let the notation be as above. Let t > log(4R3c™2), and let &
be a 2m-periodic non-negative smooth function. Let v = (vi,v2) € R* with
|vs|| > R™L. Then

2m
(3.7) qe* | J(Blairg)v)e(9)dd <

{(1 +0(e))Jp, (7" lur]])€(61) + O(Lip(f1) Lip(§)e™)  if (3.8) holds

0 otherwise
where
(38) (=g 'Qo(v), e va]l) € I8 x I® and vy < 2Re".
If we moreover assume that e~ ||v2| € Iy and Qo(v) € [, f], then

2m
(3.9) gqe* ; f(A(arrg)v)§(0) df =

(14 0() s, (e lur])€(61) fo (=g Qo (v), ™" |lval])
+ O(Lip(f1) Lip(§)e™").

The implied constants depend polynomially on R.
Analogous statements hold with the roles of v1 and ve switched.
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The proof is based on a direct computation which we will carry out in the
next lemma.

3.5. Lemma. Let the notation be as in Lemma 3.4. Lett > log(4R3c~2). If
f(A(agro)v) # 0

for some v = (v1,v2) € RY with |lv;|| > R™! and some 0 € [0,27], then all
of the following properties hold
(1) q(1 —2¢) < e ur] < gq(1+e).
(2) |0 — 0,,| < 2Ree™?,
(3) et ||vol| € I, and
(4) =47 Qo(v) € I§”.
Proof. The definitions of f; and fo imply that
if |lvg]| > (R+20R3)e!, then  f(A(ayrg)v) =0

and there is nothing to prove. We thus assume that |jv;]| < (R + 20R3¢)e?
for the rest of the argument.
For convenience, we will write 6; = 6,,. Since 6 € [0, 27] satisfies

—e—g?2 5+52

agrguy € [=55, 5] X [¢ — €, q]
only if
(3.10) 16— 61] < See™" o]t < 2Ree,
we see that when
(3.11) q(1—2¢) <e | < q(1+¢)

fails, f(A(airg)v) = 0.

Thus, assume that (3.10) and (3.11) hold for the rest of the argument,
which is to say the conditions (1) and (2) in the lemma are satisfied if
f(A(agrg)v) # 0. We now show (3) and (4) must also hold.

Let us write

ro,v2 = (X2, ¥2).
Recall that ||v;]| < (R+20R3¢)e! and that @ is in the range (3.10), and write
rour = (x1,¥1) and  reva = (X3, Y5)-
Then ||| < 4Ree™?, |yj — ||lv1]|| < 4Ree™?,
(3.12) Xy — %o, |yh — Yo| < 3Ree™ |jur|| ™" v < 4R3ee™;

in the last inequality we used e < R4, ||v2]| < (R + 20R3¢)e!, and (3.11).
Thus, we conclude that

asrova = (e'xb, e tyh) = (efxg + X2.0, ety + y2,0)

where |x99| < 4R and |ys 9| < 4R3ze 2.
In view of the definition of fs, we conclude that fa(a;rgve) = 0, unless

elxy € (Iél))ZORga and ey, € (Ifl))QORgs +¢€
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These and the bound on x3 ¢ imply that

(3.13) e'%y € (I8)aupss

and hence using the upper bound on |x3| implied by (3.13), we get
(3.14) 132l = lloalll < Hre-

[[vz2]]

Since ey} € (I§1))20R35+€ and |ya 9| < 4R3ce™?, we conclude from (3.14)
that if fo(aprgvs) # 0, then

_ 1
e lvz]| € (I)g1 e

which establishes (3) in the lemma.
Finally, combining (3.13) and (3.11), we conclude that

_ _ 1
¢ orl %2 € (U )somee.
Since A(rg) € SO(Qo) for all # and A(rg,)v = (0, ||v1]|,X2,¥2), we get
—7'Qo(v) = =47 Qu(A(re,v)) = ¢ [lurl| % € I
as it was claimed in (4). O
We now turn to the proof of Lemma 3.4

Proof of Lemma 3.4. For convenience we write 6; = 6,,. By Lemma 3.5 if

f(A(agrg)v) # 0, then all the following hold true:

(3.15a) q(1 —2¢) < e o]l < g(1+¢)
(3.15b) |0 — 6| < 2Ree™?

(3.15¢) et |vg|| € TP

(3.150) — ' Qo(v) € 1Y

We begin with the following computation which will be used in the proof
of both (3.7) and (3.9).

27 27
fi(agrovy) dO = fi(—e"||v1]| sin@, e |lv1 || cos §) d6.
0 0
Making the change of variable z = —e! ||v1| sin §, the above integral equals
16) o [ (e ol VIS @ Tl : dz
[[oa] V1= (ez/[ur]])?

e H/ fi(z,e " ||v1]]) dz + O(R*Lip(f1)e ")

“H1+0(e))e g, (7 [|ual]) + O(R? Lip(fr)e™™)
where in the last equality we used (3.15a) and (3.6).
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Let us now begin the proof of (3.7). We can restrict the integration in
(3.7) to 6 satisfying (3.15b). In this range

(3.17) [€(0) — £(61)] < 2Ree? Lip(¢).
Since 0 < f1, fo <1 and ¢ is non-negative, we have
2 2m
(3.18) | f(A(agre)v)€(6) db < i f1(asrg)€(6) do

Moreover, in view of (3.17), we have

filairg)€(0) = fi(arrgv1)€(61) + O(R® Lip(¢)ee ™)
This, (3.18) and the fact that the range of integration is (3.15b) implies

2w

27
et F(A(agrg)v)E(H) df < £(0y)e? fi(asreuy) + O(R? Lip(€)ee ™).
0 0

This and (3.16) imply that

2T
(3.19) €* i F(A(agre)v)E(0) do <

¢ (1+0(€))Jy, (e url&(01) + O(R* Lip(f1) Lip(€)ee™™)

Thus (3.7) follows from (3.19) in view of (3.15¢) and (3.15d).
Note that claim regarding € follows as well, indeed if either (3.15a), (3.15¢)
or (3.15d) fails, both the left and right side of (3.7) equal zero.

The proof of (3.9) is similar. Indeed one argues as in the proof of
Lemma 3.5 to show that if e™t ||vg|| € I} and Qq(v) € [a, 8], then for all
6 in the range (3.15b), one has

fa(agrove) = 1.
One then repeats the above argument and obtains (3.9). g
3.6. A smooth cell decomposition. Let
Q= {(w1 + wy, w(wi —w2)) : lwg| <1},
D = {(v1,v2) « fJlugll < 1}.

As before, write v = (v1,v2) € R* where v, € R2. Let 71(v) = (v1,0) and
ma(v) = (0,v2); abusing the notation, we also consider m(Q) C R2.
Write Q \ D = Q1 U Q3 where

Q1= {(v1,v2) € Q:|jvy| > 1} and
Qg : = {(Ul,vg) € Q:|un| <1, lve|l > 1}.
A direct computation shows that (vq,v9) € Q if and only if
loal* < 4 = [lur || = 2|Qo(v1, v2)] -
It follows that for every v € m1(£21), we have

(3.20) {IIAv]| = (v1, Avr) € Q1 } = [0, /4 — ||lu1]|?],
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and for ve € (), we have

{2l + (Av2,v2) € Qo} = [0, min(1, /4 — [Jv2]|?)].

Fix some R > 102 and let 0 < e < R™20. Let E € N be so that % <
100RY¢ < 51, and put

=[Z, L] forall1<i<E.

Fix two families of smooth functions {¢; } and {&"} with C! norm < e~1°
satisfying the following:
(6-1) Forall i, 0 < & < ¢&F <1,

&M =1on 21, supp(&) € 27(L).»

¢ =1on2n(l;) 42, supp(§ ) C 2m(1;) o2

(here we use the notation (3.4)). We extend & to 27-periodic functions
on R.

Similarly, let £’ € N be so that - < 100R% < and let

1
E—1

I = []E,l,EL,] forall1 <j < F'.
Fix two families of functions {Q] } and {o; } with C! norm < 710 so that
+
(_ ) FOI“aHZ,OSQj SQJ' <1,
g;r =1 on RIj, supp(gj) C R(I;).2
0; =1on R(Ij) 42, supp(e;) C R(I;) g

Extend gf to R by defining them to equal 0 outside their supports.
Define

wi(0,7) =& (0)of (r) and @ (0,r) =& (0)o; (r).

We will consider wfj as functions on R? using our slightly non-standard

polar coordinate system where any 0 # w € R? corresponds to (0, |[w])) if
ro,w = (0, ||w||). Let

I = {(i,4) : supp(;;) N m (1) # 0}
Iy ={(,]) :supp(p; ;) C mi ()}
We define IQi similarly with s and 79 in lieu of €1 and ;. Note that for

k=1,2and o =+
area(m () Z /gpu
(1,9)€Zg

(3.21)

<L e.

We will work with k& = 1 for the remainder of this section, similar analysis
applies to k = 2 with the role of v; and vy switched. For all (i, 5) € Z, let

Qj'] = {(v1,v2 +w) : (v1,v2) € Ql,goj:j(vl) =1, |lw| < 3Re}.
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We will also define ; ; C Q:rj as follows. In view of (3.20), we will call
the pair (i,7) typical if
inf{\/4 — [Jv1][? : v1 € supp(gp;fj) Nm ()} > Ve,
Let Z; denote the set of (i, ) € Z; where (i, ) is typical and for every

(v, Avy) € Q1 N (supp(gogj) X ]RQ) with ||Avy|| € ([O, 4 — ||v1H2])

we have (v1, \v; +w) €  for all w € R? with |Jw| < 10Re.
For any (i,j) € Z; , set

—20Re

2
(322) QZ,_] = {(UI,UQ _|_ w) . (U17U2) S Ql m (Supp(gpz ]) X R ) } m Ql

we R |w|| <e

Since supp(yp; ;) C {w : @Zj(w) = 1}, we have Q; ; C Qj] Moreover, since
{supp(p; ;)} is a disjoint collection, {€2; ;} is a disjoint collection.

In view of (£-1), (0-1), and the above definitions,

(3.23a) Lo, <D lor <4 Luyful<s)
It

(3.23D) Y la,, <lg
I

The intervals I;rj and [ i+ Inour application of Lemma 3.4, 53[ will play
the role of &; we will also work with f = fi fo where fi is defined using Q;t
above and f5 is defined using Iy = [~¢~ '8, —¢~'a] (for some R~! < ¢ < R)
and intervals I -i- which we now define. Put

IJ_’_ [O,b;r] bJr = sup{\/4f |v1]|?:v1 € supp(p ) 1 (2 )}

(3.24)
L - =106, b, = inf{\/4 — [|v1|?:v1 € supp(p )0771(91)}.
If (4,7) is typical, i.e., if b;; > /€, put
(3.25) 5= (1) 0. and L= (I};_) ,oopo.-

Since supp(p;- ;) has diameter < 200R105 and e < R if (i,7) is not
typical, then bJr < 2y/e. In this case, put I, = [0,3+/].

We have the following lemma.

3.7. Lemma. Assume R > max{103, |a|,|S|} and let R~' < ¢ < R. Let
t > log(R%c™1), where as before 0 < ¢ < R~

(1) Let Iy = [—q~'8,—q 1a]. Let (i,5) € fl_ and let f1 satisfy (3.3) with
o; (and with &' = 200R¢ instead of €). If

T (e ToalDEs (@) 10 (~a7 Qo) 11— o (e leal}) # 0
for some v = (v1,v2) € R*, then all the following hold
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(a) QO(U) € ([awﬁ])i"»OR‘lE: and
(b) ety € supp(cp;j), and
(c) e tv e Q.
(2) Let (i,j) € ;. If v = (v1,v2) € etQ;’rj satisfies Qo(v) € [a, 5], then

et val| € I:rj
Proof. We first prove part (1). If Qo(v) € ([av, 8])30R4c, then
~47'Qo(v) & (To)sorse = 15,
hence
1183) (—qilQo(v)) =0.

Moreover, if we put 1 := e ‘v, then 05, = 6,,, and 1 & supp(%fj) would
imply that gj_(e’t llv1]])&; (0y,) = 0. This in turn yields

0 < filx e " Jluil)& (8n,) < 05 (e lor)€ (Buy) =0,
see (3.3); thus, Jp, (7" ||v1]))& (6, ) = 0. In conclusion, we may assume that
(8:26)  Jp (e al)& (Bu) 1y (=0 Qo (@) 11y (7" llezll) # 0,
and that

Qo(v) € ([, f)3orse  and 01 € supp(y; ;)-

We need to show that (c) is also satisfied.
Since Qo(v) € ([, B])30R4e, Where R > max{103,|al,|B|} and e < R~
and ||v1]| > €f, there is A € R so that

(3.27)  wy=Avy +w, wherew L v and |jw|| < 2R ||jv1]| "' < 2Re™.

Thus e vy = Xe "ty + e tw = Aoy + e tw.
Moreover, by (3.26), we have et |Jug|| € (Igj)(?’) = (I;.)30R3s, Where

2,

I = (I ;- )—s0omoe and I ; _ C[0,/4—[o1]?],

see (3.24) and (3.25). Since |le7'w| < 2Re™%, we conclude that ||Avy[| €
([0, v/4 = [91[?]) _yp .- In particular,

(01, A01) € 1 N (supp(goi_,j) X RQ),
and v = e (01, AUy + e~ "w) where ||e'w]|| < 2Re™?. By the definition of Iy

and €2; ;, we conclude that e *v € Q; j. Thus, (c) also holds.
The proof of (2) is similar to the proof of (c), see in particular (3.27). O
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3.8. Upper bound estimates. Before starting the proof of Theorem 1.2,
we record a weaker (but more explicit) version of [EMM98, Thm. 2.3], which
will be used in the sequel — see also the very recent work of Kelmer, Kon-
torovich, and Lutsko [KKL23].

For every R > 0, let

D(R) = {(v1,v2) : [Jugll < R}
Then D(R) \ D(e *R) = D(R); U D(R)2, where
Di(R) = {(v1,12) € D(R) : e 'R < ||v1|| < R} and
Do(R) = {(v1,v2) € D(R) : ||v1]| < e 'R, e 'R < ||va| < R}.

We constructed smooth cell decomposition for €2y and €2y in §3.6; in the
following lemma we will use a similar construction (without repeating this

construction) for D;(R) and Da(R).
3.9. Lemma. Let g = (g1,92) € G and put N = gA. Let
R > max{10%,|al, 8], lg1[*" . 921"},
and let 0 < n < 1. There exists ty < |logn| so that if t > to, then
#{v = (v1,v2) € A : max (|||, vz]) < Rel, o0 < Qo(v) < B} < 2+t
where the implied constant depends polynomially on R.
Proof. The following basic lattice point estimate will be used:
(3.28) #{v e N Ne/’D(R)} < %

where the implied constant depends polynomially on R.

Since R is fixed, we will denote D (R) by Dy (k = 1,2) for the rest of the
proof. Let ¢ = 107°R~20. Apply the construction in §3.6 for m1(D;) with
this R and e. In particular, the functions & are defined as in (¢-1) with

o 1
I =24 4] foralllgiSEwhereE§10OR106§

B E—1
and Q;_ are defined as in (p-1) with
. . 1
I =[5, 4] forall 1 <j < E' where o < 100R%e < T

For all 4, j as above, let & = {;r

I = {(4,4) : supp(i ;) N m1(D1) # 0};
for all (i,j) € Z;", we have supp(g;) C [e 2R, R] C [R™}, R].
For all (i,j) € Z;, put

Dij = {(v1,v2) € B! : pij(v1) = 1, ||un|| < R}.
Then 1D1 < ZIfr 1IA3¢,]~ < 4D(2R)1~
Define f; as in (3.3) for ¢ and p;, and with 200R' ¢ instead of . Let
(3.29) f2 = fl_g-18,—¢=1a),/0,R):

,0j = ij and let ¢; ; = 0. Put
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see (3.5). Put f; j = fif2. By the choice of R, we have }_ f; ; < 4p(2r)-
By Lemma 3.4, for any v = (v1,v2) € etIADi,j with Qo(v) € [a, f], we have

(3:30) ¢ 02” Fus (Bagre)0)E:(0) o =

g1+ 0() g (e or]l)&i(0u,) f2 (g Qo(v), e [[ua]])
+ O(Lip(f1) Lip(&)e ")

where the implied constant depends on R.
First note that, if ¢ is large enough compared to R, we have

(3.31) O(Lip(f1) Lip(&)e™?) < e e < &2

Furthermore, for any v = (v, v2) € €'D;; so that Qu(v) € [a, ], we have
f2(a7*Qo(v), e ||vz) = 1. Thus, using (3.6), we have

(3.32) Tp (e orl))&i(0un) f2(a7 ' Qo(v), e " o) = & + O(e?).
Put z = gI". Summing (3.30), over all v € A’Ne'D; ; so that Qo(v) € [av, §]
and using (3.30) and (3.32), we conclude that
27
(3.33) e(#{ve N ne'Dij: a < Qo(v) < B}) < qe?t fij(A(agre)x) db,
0

where we used 0 < & < 1 and replaced €2 + ¢ + O(¢?) obtained from
adding (3.31) and (3.32) by O(e).
Summing (3.33) over all (i, j) € Z; and using Z” fij < 4p(2r), we get

2w
H{ve N Nne'D;:a< Q) <)< €_lq€2t/ iD(gR)(A(atTQ)IL‘) dé.
0

One obtains a similar bound for the number v € A’Ne'Dy with Qo(v) € [« A].
Since D\ e 'D = D; UDs and ¢ = 107R~2°, we conclude

#{veNnel(D\e D) :a< Q) <8<

e Lge? /27r iD(zR)(A(atrg)w) de.
Let t,, be as in Lemma 3.2 applied with 1 and 2}%, and let ¢ > 10t,,. Then
by Lemma 3.2,
#{ve Nne'(D\e'D): o < Qov) < B} < 71,
We may repeat the above with ¢ — ¢ for all 0 < ¢ < ¢/2, and obtain
(3.34) #{lve N ne D\ e D) : a < Qv) < B} < ZIMEH,

we also used t — ¢ > t/2 > t,, when applying Lemma 3.2 with ¢ — £.
Since e!(e~*D) = e!~*D, summing (3.34) over 0 < £ < t/2, we conclude

(3.35) #{U S A ﬂet(D \ e—t/2D) ca < QO(U) < ﬁ} < e(2+n)t.
The lemma follows from (3.35) and (3.28). H
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4. PROOF OF THEOREM 1.2

The proof relies on Theorem 3.1 and will be completed in some steps.
Recall that M = R?/A and that A* denotes the dual lattice. In view of our
normalization, 27rA* = gyZ? where gy € SL2(R). Let

0 -1
(41) g= (9M7 _ngw) = (91792) S G where w = <1 0 >

4.1. Passage to Q. As it was observed in (2.1), if A; = |lv;||?, where for
1=1,2, v; € 2rA* is an eigenvalue of the Laplacian of M, then

(4.2) A1 — A2 = Qo(v1 + v2,w(v1 — v2)).
Define Q = {(v1 + v, w(vy —v2)) : ||vi]| < 1}; and let
N = {(v1 +vg,w(vy —v2)) : v1,v9 € 2TA*} = gA
where A = {(v1 + vo, w(v1 — v2)) : v1,ve € Z2}.
Let T be a (large) parameter, and put t = §log 7. In view of (4.2),
(4.3) Rum(a, B, T) =#{ve A, ,Ne'Q:a < Qov) < B

recall that A, = {(wy,w2) € A" : w; # 0}.

Let A and 6 be as in Theorem 1.2. Without loss of generality, we assume
A>10°and 0 < § < 107°. Let A be given by Theorem 3.1 applied with
103A4. We will show the claim in Theorem 1.2 holds with A’ = 104. To
simplify the notation, write A = 103A for the rest of the proof.

Thus let us assume (1.4) holds for A": for T > Ty (Tp is a yet to be
determined large constant) and all (py, p2,q) € Z? with T%4" < ¢ < T?,

(44) BB+l -l >t

This implies that so long as t = %logT is large enough (depending on a, b,
and c), we have

_ _ a b
(4.5) 9511 = —wgy wam = (b c>

satisfies (3.2) with ¢, p = /10, A. That is: for every Q € Maty(Z) with
eP’A < ||Q| < e’ and all X € R, we have

(4.6) g5 g1 — AQ|| > Q™ = Q| ~A/1000

4.2. Lemma. There are at most two gZ*-rational two dimensional subspaces
L,L" so that if for some 2t/5 < s < t, Lg is a (61/A, 01, s)-exceptional
subspace, then Ly = L or L.

Proof. Let 2t/5 < s < t. Recall that a (6;/A, 61, s)-exceptional subspace is
spanned by two vectors (grwi, 0), (0, gows) € gZ* satisfying

0 < [|giw;| < eéls/A, and

(4.7) 5
|Qo(g1w1, gowa)| < e ™%
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We also note that

6518/A S 651t/A

and 6—518 S 6—251t/5

for any 2t/5 < s < t.

Assume now that there are three pairs (possibly corresponding to different
values of 2t/5 < s < t) so that (4.7) is satisfied. Then Lemma 2.4, applied
with 6, /A and 2A4/5, implies that there is Q € Mato(Z) with ||Q]| < e!0091t/4
so that

oz - 26l =|

a b\ _ —(2A-100)(5,/A)
¢ Y -ef st

max{ ||QH7A/1000 ’ 100e—PAt/(10004) L

Since p/A < 61/A < p/100, this contradicts the fact that g5 'g; satisfies (4.6)
with ¢, p, A — note that if Q| < et/A, we may replace Q by an integral
multiple nQ with e?/4 < ||nQ|| < 2eP/4 . The proof is complete. O
Let L and L’ be as in Lemma 4.2. For a set E C R* and s > 0 we let
N(E) == #{v € A}, Ne’E:a < Qo(v) < B},
N{(E) :=#{v € (A}, \ (Ls ULL)) Ne’Era < Qov) < B}
4.3. Counting and circular averages. For the rest of the proof, we fix
e = et for some 0 < 7/ < 1 /100 which is small and will be optimized

later. We will also assume 8 — a > € otherwise Theorem 1.2 holds trivially.
Recall that

Q = {(w1 + wa,w(wy —we)) : |Jw;|| <1},

and that Q\ D = Q; U Qs where D = {(v1,v2) € R* : ||Jug|| < 1}, and
O = {(vl,vg) e Q: v > 1} and
Qo = {(v1,v2) € Q: flur]| <1, [Jva]l > 1}.

Let R be a large constant (we will always assume R < =120 hence, R
is much smaller that e'), satisfying

R > max{10% |al, 8], [al, bl [c[};

note that m(2) C B(0, R).
Apply the construction in §3.6 for 7 (€2;) with € and R here. The analysis
for kK =1 and 2 are similar, thus, let £ = 1 until further notice. Let

%{Ej:@igf for (i,j)EIf[.

Note that supp(gf) C [q — 200RYe,q] C [R™}, R] for some R~ < ¢ < R,
see (0-1) — indeed in the case at hand, we have 1 < g < 2.
For o = &, define f asin (3.3) for ¢ and o7 . Let

(4.8) 15 = fig.1e,
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where I = [—¢7'8,—¢ o] and I; = (IO+)—100R55’ see (3.5) and (3.4). Put
=T 13-
4.4. Lemma. Let the notation be as above, and let L and L' denote (81/A, 61,1)-
exceptional sybspaces if they exist.
If (i,j) € I, , then

2
(4.9) qe* > / i (Alarg)v)&; (0) df <

veA! \(LUL)
(¢ + 0(2) - Ni(Qug) + O ).

Moreover for every (i,j) € If, we have

(410) (= +0(2) - N(Q) <ae® Y / 1 (Mg o) (6) do

veA,,\(LUL')

The implied constants depend polynomially on R.

The proof is similar to the proof of Lemma 3.9. More precisely, we will
use (3.7) for f; and (3.9) for f+ let us now turn to the details.

Proof When there is no confusion we drop i, j from the notatlon and denote

fi5 by f£, &5 by €5, ete. Also, we will put I = Iy and I = I, ;, but will

keep the more cumbersome notation for Ig“ and I, +
By (3.7) in Lemma 3.4 applied with f~ = fis for any v € R*, we have

(4.11) qe?* " f(A(arg)v)E (0)dl <
0
(1+0() T (7" [oa) € (0o) 1 (=47 Qo (v)) Loy (€7 [[v2ll) + €,
where I®) = I p3. and

(4.12) € = O(Lip(f; ) Lip(§)e ™)

furthermore, £ = 0 if
(—q_lQO(U)ae_t”m”) ¢ Ié?’) X I§3) or |lv]| > 2Re".

By (3.9) in Lemma 3.4 applied with f* = f”, for any v € R* with
e |lvall € I and Qo(v) € [e, 8], we have

2m
(4.13) qut/O FH(A(arg)v)ET(0)do =
(L+0() g (e ol €7 (Bu,) f5 (=g Qo(v), e [lvz]])
+O(Lip(f;") Lip(¢")e ™).

In particular, (4.13) holds for all v € etQ;fj with Qo(v) € [o, 8] thanks to
part (2) in Lemma 3.7.
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Before analysing (4.11) and (4.13) further, we record the following:
(4.14) O(Lip(fli) Lip(fi)e_%) =0(ePe ) « &3,

so long as t is large enough (recall that the implied constants depend poly-
nomially on R).

Let us now begin with (4.13). In view of (3.6), for any v = (v, v9) € €€
so that a < Qp(v) < B, we have

(4.15)  Jpr (e loal) €7 () 5 (=07 Qo(v), e Jloz]]) =
(e + O())o (e lurlDEF (0u) £ (—a~ ' Qo(v), ™" [|u2l]).-

Moreover, for every v € etQTJ, satisfying o < Qp(v) < B,

ff (=07 Qo(v), e fluall) = 1, €¥(00y) =1, and o (7 [|ui]]) = 15
from this and (4.15), we conclude that

Jpr (7 orl) €7 (0u,) 5 (=07 Qo(v), e Jluz]]) = (e + O(e?)).
Together with (4.13) and (4.14), this implies that

(4.16) qe?t " FT(A(aire)v)ET(0)do = e + O(e?)
0

for every v € etij with a < Qo(v) < 5.
Summing (4.16), over all such v € A, \ (LU L), we obtain

27
(417) (e +0(?) - N{(Q)) < ge* Y / FH(A(arrg)v)€™(0) o

veA!, \(LUL)

This establishes (4.10).

Let us now assume (i, j) € Il_ and obtain a lower bound for Ny(€; ;). For
this, we investigate the term appearing in the second line of (4.11).
We first claim that

T (7 loall) € (8u)1 0 (=g~ Qo)1 (e [lva]l) #0,

then Qo(v) € [a, 8] and v € €'Q; ;.
To see the claim, recall that by part (1) in Lemma 3.7, for any v € R*,

Ty (€ o€ (0u)10 (a7 Qo)1) (7 eall) = 0

unless all the following are satisfied

(4.18a) Qo(v) € [+ 50R%¢, B — 50R¢],
(4.18b) v € € supp(gpi_’j), and
(418C) NS etQi’j.
in deducing (4.18a) from Lemma 3.7, we used the definitions
3 - . _ _
I(g ) = (IO )30R3€ and IO = ([_q 157_q 1a]),100R5€‘
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We conclude from (4.18a) that Qo(v) € [«, 5]. Using the definition of
Q;; in (3.22) and since 2R3~ < ¢, (4.18¢) implies that v € e'Q; ;, and
completes the proof of the claim.

We now return to the proof of the lemma. Recall that

Tr (e orlDE (0u)1,0 (=g Qo)1 (e luall) <
Ty (e luill) = (e + 0(52))Q_(€_t lor]]) < &+ O(?).
This and the above claim imply that
(4.19) Yo T (e ul)E (81 (=07 Qo)1 (e val))
veAL,\(LUL')
< (e +0(e%) - N{(Qig)-

Moreover, since (—g~1Qo(v),etIv2l) ¢ 163) X I§3) or ||v1]| > 2Re' imply
&€ = 0. We conclude from Lemma 3.9 applied with n = r’/10 imply that

3 6 e e 22 ¢
veN

we used Lip(f; ) Lip(€ 7 )e 2" < 672072 see (4.14), and € = e~ """, This, (4.19)
and (4.11) imply that

27
o S [T A s+ 0 <

veA!,\LUL'
(e + O(e%)) - Ny (i),
as we claimed in (4.9). O

We will use Theorem 3.1 to reduce both (4.9) and (4.10) to the study of
Jx ffj dmx, see (3.1). Let us begin with computing this integral.

4.5. Lemma. For o = =+ let f7, = [7f§, where for k = 1,2, f7 is as
in §4.3. There is an absolute constant cp so that

(4.20) /f”dmx—c,\a ]‘/QJ +0(e —a)}Igj‘/Q;’,

Proof. We have

/ f7 dmx = e / s
X R2 R2
:cAe/g;-’/ f2"+0(€2)/@§’ s
R R2 R R2

where cp is absolute and the implied constants depend only on R.
Since fy is defined as in (4.8), we conclude that

/fz"—q‘l Q)1 + O(q"<(8 — )|I7)))
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again the implied constant depends only on R. The lemma follows. ([

4.6. Lemma. Let the notation be as in Lemma 4.5. In particular,
£ =

where f]j[ are as in §4.3. Also put

Tfj =cpA(f— )

If (i,5) € Iy, then
(4.21) (X, + O(S(fi;)8(&)e)) < (1+0(e)) - N{(u)
Moreover, for every (i,j) € Z;, we have
(4.22) (140(e)) - N{(QF)) < e (T + O(S(£5)8(&h)e™)).
where the implied constants depends polynomially on R.
Proof. We will prove the lemma using Lemma 4.4 and Theorem 3.1. Let us
begin with restating the main conclusion of Theorem 3.1 in the form which
will be used here. When there is no confusion, we drop i, j from the notation
and denote ffj by f*, §ii by &%, ete.

Recall that A’ = gA where g = (g1, 92) is as in (4.1). Let L and L' be as
in Lemma 4.2 if they exist. For o = &, put

0= S ro(aame))

vEA'N(LUL')

Co = {0 €0.27] : f5(0) = €1},

sp
and define

ro _ fa(e)_fs%(e) OECU

mod(e) - 7 .

f7(0) otherwise
where we write f(0) = f(A(arg)gl”).
Since g satisfies (4.6), Theorem 3.1 and the definition of fZ_,(6) imply
2m

(4.23) 70 (0)€7 (6) do = / £7d9 / fodmx + O(S(f7)S(E7)e™%").
0 X

With this established, we first show (4.21). Let & = —. Assuming 7’ in
the definition of ¢ = e~ is small enough, we have

O(S(f7)S(E)e ™" < (8 - a).

Recall from §3.6 that [ o; = ¢ and that ’IZ_]’ > y/e. Thus (4.23), together
with the above and Lemma 4.5, implies that

(4.24) ) frooa(0)E(0)do > 3(8 — a).
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Moreover, by part (2) in Lemma 3.2 applied with 4, L, and L', we have
(4.25) / fop(0) Ao < TV

[0,27]\C_

Recall that 6; < 1/100, hence, if 7’ < 1/100, then (=1t < 4(5 — a).
Thus, we get from (4.24) and (4.25)

2w
> /f (agrg)v)E~(0) dO

veA!,\(LUL")
2

(4.26) = [ o0& (0)do - fop(0)€(6)do
0 [0,27\C_
27

= (1+0(e)) ; Froa ()€ (0) 6.

In view of (4.9) in Lemma 4.4,

27
0w Y[ e @)@+ o) <

veA! \(LULY)
(e + O(%)) - N/ ()

Using this and (4.26) (multiplied by ge?'), we conclude
2m

(14 0(e)) ; Froa(0)E(8) A8 +O(™%) < (e + O(e?)) - N{ ().
This, (4.23) and (4.20) yield,
(4.27) (Y +O(S(f)SE)e ™) +0(e™) < (14 0(e)) - Ny ().

Assuming 7’ is small enough and ¢ large, we have

o / 6‘)
oo s
Hence, (4.21) follows from (4.27).
We now show (4.22); the argument is similar and simpler. By (4.10),

g2 < 2. (cA(ﬂ —a) |l -

27
(4.28) (e+0() - N(Q;) < ge® > FH(A(agre)v)ET(0) dO
veAr \(LuL) Y0
27

< ge” ; roa(0)67(6) 0
Thus, (4.22) follows from (4.28), (4.23) and (4.20), applied with e = +. O
4.7. Lemma. There exists n depending on 1’ and some Cy so that
(4.20) N2\ D) = C1(8 — a)e® + Mo + O((1 + |a + |8))Ne®20)
where N is absolute, the implied constants depend on R and

Mo=#{ve N N(LUL)Nne(Q\D):a < Qo(v) < B}
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Similar assertion holds with Q \ D replaced by D \ e~ 'D.

Proof. We will prove the assertion for 2\ D, the proof for D\ e~!D is similar.
Recall that Q\ D = Q1 U Qy where

Q1 = {(v1,v2) € Q1 [Jvy > 1}
QQ = {(Ul,vg) cQ: ||’I)1H < 1, ||1)2H > 1}.
Fix k =1 or 2. By (4.21), for all (4,j) € Z,;,
(4.30) *(Yi; + O(S(f7)S(E)e ") <
(1+0(e) - N{(Qi) < (1+0(e)) - Ne(Q7),

where we used €2; ; C Q - in the second inequality, (3.22).
Also by (4.22), for all <p” € I,r, we have

(“31) (1400 Ni(@;) < ¥ (T + 0(8(£;;)8(¢ ™).

Thus summing (4.30) over all (i,7) € Ik_,

(4.32) QtZT +O(S(fH)8(ENe")) <

DTN 2 0:+06) Z N

Moreover, summing (4.31) over all (z', j) € IT,F, we get the following:

(4.33) (1+0(e ZN’ (14+0(e ZN’
”Z T+ +O(S(f;5)8(&Me™").

By (3.23a) and (3.23b), €;; C Q4 are disjoint and € C UI:Q
Hence, (4.32) implies that

(4.34) (I) < (1+0(e))V; (%) < (11).

where (1) is the first line in (4.32) and (II) is the last line in (4.33).
Recall from Lemma 4.6 that

Y5 =calB \I]i|/§i/@]

in view of (£-1), (g-1), and (3.25), the above implies that
ZT (1+0¢(e ZT (14+0(e)(B — a)Cra

where C_'k,l is absolute and the implied constants depend on R.
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. _m
Furthermore, using € = e, we conclude

ZS S(&F)e™ < (1+]al + |B) Ve e

< (1+|al +|8)Ne /2,

where the implied constant depends on R and we assume 7’ is small enough
so that d — N/ > d2/2.
Altogether, there is some n > 0 so that for k = 1,2, we have

N () = Cra (B = @) + (L +[a] +|8]) Vel =2
Since 2\ D = Q3 Uy is a disjoint union, we conclude that
(4.35) N/(2\D) = C1(B8 — a)e® + (1 + |a| + |B[)N e 27!

where C} = 6'1,1 + C_'271.
The lemma follows from (4.35) and the definition of M. O

Proof of Theorem 1.2. We will again use the following
(4.36) #lve AN n e D} < C{e%

where C] depends on R, see (3.28).
First Apply Lemma 4.7, with ¢t and 2\ D. Then

(4.37) N/(Q\D) =
Ci(B — )= 4 M +O((1 + |a| +|B|)Ne2m(=0)
where

=#{veA,N(LUL)Ne"(Q\D):a<Qo(v) < B}

We now control the contribution of A’ N e!D to the count. Recall our
notation D(e™%) = e7*D. Then e‘D(e~*) = ¢!~‘D, and

D\ e 'D) =€'(D(e )\ (e7'D(e7)).
Applying Lemma 4.7 with ¢ — ¢ (instead of t) for £ < 3t/5 and D \ e~!D,
(4.38) N;(D(e™")\ e 'D(e™)) =
C1(B = a)e® ™0 + Mg+ O((1+ |a] +[B])VeE200=0)
where
=#{veA,Nn(LUL)N et(D(e_e) \ e_lD(e_z)) ta < Qo(v) < B8}

and L, L' are as in Lemma, 4.2.
Summing (4.38) over 0 < ¢ < 3t/5 we get

Ni(D\ e /°D) = C1 (8 — a)e® + M + O((1 + |a] + [B)Nel~)
where M” =3~ M,. This, (4.37) and (4.36) thus imply
(4.39) Ny(Q) = C1(B — a)e® + M+ O((1 + |a] +|8)Ne2=mt)
where M = #{ve AN, N(LUL)Ne'Q: a<Qov) < B}
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To conclude the proof, we rewrite (4.39) in the notation of Theorem 1.2
and further analyze M. Recall that ¢t = %log T, hence, by (4.3) and (4.39),

(4.40)  Rum(a, B,T) = C1(B— )T + M+ O((1 + |a| + |B)N T~ 2).

We now turn to the term M. Since
_ a b
Qo(g1w1, gow2) = Qolgy 'gowr, w2) and gy g2 = (b c) .

We conclude, as in the proof of Lemma 2.5, that if we put wy = (x1,y1) and
wy = (—y2,%2), then u; = (x;,y;) satisfy

:I:lH}eélt/A < 6251t/A and

|| < max{||gi]] |9

(4.41) 1 i
|Bum(u1, uz)| = |Qolgy "grwr, wa)| < e .

where we assumed ¢ is large in the second inequality of the first line. Thus
by Lemma 2.5, the pair (w},w}) is obtained from (ugz,u;) using the above
relation, that is, w] = (x2,y2) and wh = (—y1,x1).

Let v € AN (LUL") Ne'Q satisfy that o < Qo(v) < 8. For simplicity, let
us assume that v € L and write v = ¢1(g1w1,0) + £2(0, gows). Then,

v = (v1 +v2,w(v1 — v2)) = (Lrg1w1, l2g2w2)

where v; € 2rA* and ||v;|| < €. Recall also that (g1,92) = (9m, —wgmw)
and guZ? = 27 A*, hence,

V1 = gMm fl’wl—zfgwwg = gm Elul-gﬁguz
)4 4 l —£
= gm 1w1+ 2WW2 __ am 1u12 2u2;
changing L to L' yields v = gm 751"1H2“2 and vy = gm 751“1H2”2
Altogether, (4.2) implies that
M = # {(51 ly) : gMm £1u1+€2u2 =V, 9M b éQuZ = U2 }
’ v; € 2WA*, Hvz|| <ela< Hvlﬂ ”'UQH <B

By Lemma 2.6, applied with 241 /A and A/5, we conclude that

M < max(Ja] )@ 2" = max(|al, 18T,
where the implied constant depends on a, b, and c¢ unless
|Bu(un, up)| < =23 < 77148,
Let x = min{n/2,8;/A}. Altogether, we conclude that
Rum(a, ,T) = C1(B = )T + O((1 + |a| + [B)NT' ")
unless {uy,ug} satisfy (1.5), in which case, we have

(442)  Ru(.B,T) = C1(8 — )T+ M+ O((1 + o] + |B)¥T").
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We now show that M = Myp(ui,u2). Let (¢1,¢2) be as in the definition of
M, then

2
By(fugtez) = HQML”'QMQ“2 =|nf*<e* =T

L1uy—Llous
2

Similarly for vy = . Moreover, we have

[o1]* = [|va]|* = Bu(ftaflen) — By (humstuz)
= Bm(u1,u2)l1ls € [, B].

Thus (¢1/2,02/2) satisfies the conditions in the definition Mz (u1,us). Sim-
ilarly if (¢}, ¢5) satisfies the conditions in the definition My (uy,u2), then
(20, 20,) satisfy the conditions in the definition of M.

The proof is complete. O

Proof of Corollary 1.3. We first prove part (1). Recall our assumption
that there exist A, q > 0 so that for all (m,n, k) € Z* we have

(4.43) lam + bn + ck| > q||(m,n, k)|| 4.

This implies that (1.4) holds for some A’, depending on A, and all T >
To(A, q). Furthermore, in view of (4.43), for u; = (x;,y;) € Z?, we have

|Bm(u1,u2)| = [axixa 4+ b(yixa + x1y2) + cy1ya| >
_A
q |[(x1x2, y1x2 + x1y2,y1y2)|| ",

which implies (1.5) does not hold so long as ¢ is small enough. In view of
Theorem 1.2, this finishes the proof of part (1).

The proof of part (2) is similar. Recall that b = 0 and ac = 1. By our
assumption there exist A, q > 0 so that for all (m,n) € Z?, we have

(4.44) la?m +n| > q|(m, )|~

As in the previous case, we conclude that (1.4) holds for some A’, depending
on A, and all T > Ty(A4, q). Hence, by Theorem 1.2, either

[Bu(a, B,T) = 7*(8 = a)| < C(1+ o] + [B)YT™,
which implies the claim in this part, or there are u1,us € Z? \ {0} so that
(4.45) ur]l, lJugll < T4 and  |Bm(ug,uz)| < T
and moreover

My (uy,uz)

(4.46) Rm(a,B,T) — (6 —a) = T

+O0(C(L+ |af +[B)NT™)

where
liuq £+ loug € Z27
My (ui,up) = # 4 (f1,62) € 52° 0 Bu(lyur £ boug) < T,
4B|\/|(U1,'LL2)€1£2 € [047/8]
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By Lemma 2.5, if Ty is large enough, then Bpy(ui,u2) = 0. Hence
Mr(u1,u2) does not contribute to Ry,(c,5). This and (4.46) finish the

proof of this case and of the corollary. O

5. EQUIDISTRIBUTION OF EXPANDING CIRCLES

In this section we prove an effective equidistribution result for circular
averages; the proof is based on [LMW22].

Let G = SLa(R) x SL2(R) and let I' C G be a lattice; put X = G/T". Let
myx denote the G-invariant probability measure on X.

We fix a right invariant metric on G using the Killing form and the maxi-
mal compact subgroup SO(2) x SO(2), and let dx denote the induced metric
on X. There exists D’ so that for all 7 > 2 and all § € R,

(5.1) dx(z,2') < P Tdx(Alarrg)z, Alarrg)x’)

For the convenience of the reader, we give again the statement of Theo-
rem 1.4:

1.4. Theorem. Assume I' is arithmetic. For every ro € X, and large
enough R (depending explicitly on X and the injectivity radius at xq), for
any et > RP | at least one of the following holds.

(1) For every ¢ € C°(X) and 2w-periodic smooth function & on R, we have

2m 2m
[ omg@ao - [ o) [ oamy] < s@se

0
where we use S(+) to denote an appropriate Sobolev norm on both X and

R respectively.
(2) There ezists x € X such that Hx is periodic with vol(Hz) < R, and

dx(x,z0) < RPtPe.
The constants D and kg are positive and depend on X but not on x.

Proof. Fix 0 < {y < 1/10 such that the U~ AU decomposition is an analytic
diffeomorphism on the identity neighborhood of radius 2¢y in SLa(R) where
U~ is the subgroup of lower triangular unipotent matrices, U is the subgroup
of upper triangular unipotent matrices, and A is the subgroup of diagonal
matrices. In particular, there are analytic diffeomorphism s—, 7, s from
(—Co,¢o) to neighborhoods of 0 in (—1,1), such that r¢ = U™ ()0 () Us(C)-
Note that

(5.2) 7(Q) = 0(¢?), 5(¢) = ¢+ 0(¢%), 57 () = ¢+ 0(¢?),
and fes =1+ 0(().

Using this we approximate the circular average (on small intervals) with
unipotent average. First note that

A(atTéJrC)l‘o = A(atu;(OaT(C)us(g)Q)%
= A(atu;(oa,t%(o)A(atus(oré)l‘o
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is within distance O(e=2's7(¢) +7(¢)) = O(e?¢ +¢?) from Al(agug(gyre)zo-
Therefore for all 0 < ¢ < {p we have

¢
2/0 P(A(arre, 5)w0) A =
1 ¢
; /0 6(Aartyoyre)o) A8 + O(S(6) (e 2¢ + (%)) =

1 s(©) A —1 / —2t 2
L] el @) (7 ) 0+ O(S()(e ¢+ ¢)

where we used the above estimate in the first equality and a change of
variable in the second equality.
Since s5(¢) — ¢ = O(¢?), see (5.2), we conclude that

¢ ¢
2 /0 H(A(arrs,o)w0) 46 = é /0 B(Aartgrs)o)(s~(0)) 40 + O(S(9)C)

where we used e ¢ + (2 < 2.
Similarly, using supgeo,¢) |(s71(8))’ — 1| < ¢ and a change of variable,

1 /¢ 1 /¢
59 C/o O(Alagrg, p)zo) A = C/o (;S(A(atueré)xg)dﬁ+O(S(¢)§)

1
:/0 $(A(arucsre)zo) ds + O(S(4)C).
Let 7 = —(log ¢)/2. Then

/1 ¢(A(atugsr5)xo) ds = /1 qﬁ(A(at_TaTuCSa_TaTr&)xO) ds
(5.4) 0 0

1
:/ qﬁ(A(at_TusaTrcA)xo)ds.
0
Let D; and k1 be the constants given by [LMW22, Thm. 1.1] applied with
X (D; denotes A in [LMW22, Thm. 1.1]). We will show the proposition
holds with
D=D,+D +1
where D' is as in (5.1).
Let T = e7 and R = eP'7 for some D” > 1 which will explicated
momentarily. Assume e! > R, then
(5.5) T =" =¢eRYP" > RP-1 > RD1,
Apply [LMW22, Thm. 1.1}, with z; := A(arre)ze, T > RP see (5.5),
then so long as D" is large enough, at least one of the following holds:

Case 1: For every ¢ € [0,27] and all ¢ € C°(X),

56 | [ s@emrrds— [samy| < s@r
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Case 2: For some f € [0, 27], there exists x € X such that Hx is periodic
with vol(Hz) < R and

(5.7) dx(x,z; ) RP1(logT)Pr71L.

We will show that part 1 in the proposition holds if case 1 holds and
part 2 in the proposition hols if case 2 holds.

Let us first assume that case 1 holds. We begin with the following com-
putation.

2w

2 ¢ R .
oo a8 = ¢ [ [Toa e, Jro(C+0)aval

‘ 27 ¢ Al A
L C_ﬂ( /0 B(A(arr,p)w0) d6) () A
+ O(sup 9| - sup ’f(é‘f‘e)—{(é)‘)

¢e[0,2m],0€[0.C]
Thus, we conclude

2

(5-8) P(A(arrg)z)&(0) db =

0
L ([ st e a0)6©) a6 + 0@

Furthermore, by (5.3) and (5.4), we have

¢ 1
(5.9) i/o qb(A(atréJre):co)d@:/o P(A(awgrus)zs) ds + O(S(9)C).

Altogether, using (5.6), (5.8), and (5.9), we conclude that

27
(5.10) | /0 S(Alarro)zo)e(@) 6 — [ €(6) 0 / ddmy| <
S(@)S(E)R™";

where kg = min{x1,2/D"} — we used (~! = 2" = R¥P". Thus, part 1 in
the proposition holds if case 1 holds.

0

Let us now assume that case 2 holds and let 2; = A(aTTCA)xo be as in (5.7).
Then by (5.1), we have

dX(A(aTTCA)*la?, z0) < eP'TRP (log T)P 7!

S e(l-l—D/)TRDltDle—t S RDtDe_t.

Furthermore, A(aTTE)*lx has a periodic H-orbit of volume < R. Thus
part 2 in the proposition holds in this case. The proof is complete. O
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6. CUSP FUNCTIONS OF MARGULIS AND THE UPPER BOUND

In this section, we put
I' = SLo(Z) x SLa(Z) C G.
Recall the following definition.
Definition 2.3. Let g = (g1, 92) € G. A two dimensional gZ*-rational linear
subspace L C R* is called (p, A, t)-exceptional if there are (vy,0), (0,vs) € Z*
satisfying
(6.1) lgronll, llgzva]l < e and  |Qo(grv1, gave)| < e

so that L N gZ* is spanned by {(g1v1,0), (0, gov2)}.
Given a (p, A, t)-special subspace L, we will refer to {(g1v1,0), (0, g2v2)}
as a spanning set for L.

Let f; € C.(R?), and define f on R* by f(w1,ws) = fi(w1)fo(ws). For
every h € SLa(R), let

(6.2) Foas(higl) = >~ f(A(h)v).

veEN(gZ*)

where M(gZ4) denotes the set of vectors in ¢Z* not contained in any
(p, A, t)-special subspace L and also not contained in R? x {0} U {0} UR2,
In the sequel, we will often drop the dependence on A, p, and ¢ from the
notation and denote fp7,47t(h; gD) by f(h;gl).

The following is one of the main results of this section.

6.1. Proposition. For all Ay > 10 we have the following: Let (g1,g2) €
G. Then for all small enough p and all large enough t at least one of the
following holds:

(1) Let C; = {6 € [0,27] : f(asrg; gT') > €17}, Then
f(agre; gT') dO < et
Ct

where f(h; gT) = f,4,.4(h; gT), see (6.2).

(2) There exists Q € Mata(Z) whose entries are bounded by et and X € R
satisfying Hg2_191 — )\QH < e~ (A1=100)pt

The implied constants depend polynomially on ||g1| and ||g2||.

The proof of this proposition occupies most of this section.

The cusp functions. Let P denote the set of primitive vectors in Z2. For
any h € SLa(R), define

(6.3) w(hSLa(Z)) = sup{1/||hv|| : v € P}.
We begin with the following lemma.
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6.2. Lemma (cf. Lemma 7.4 [EMO01]). For every 0 < p < 2, there exists t,
and by, so that the following holds. For every x € SLa(R)/SL2(Z) and all
t >t,, we have

2
/ wlagrgx)P dO < 27ty ()P + bp.
0

Proof. This is by now well known, see e.g. [EM22]. O

The sets 0;(5) and ©}(§). To put an emphasis on the product structure
of G and X, we will often write X = G1/T'1 x Go/T'y where G; = SLa(R)
and I'; = SLy(Z). Moreover, given g = (g1, 92) € G, we write

(6.4) wi(gil's) := w(giSLa(Z)).

For i =1,2, let x; € G;/T';. For all t > 0 and every 0 < 6 < 1/10, let
(6.5) ©d)= {9 € [0, 2] ‘wa(agrexe) ™ < wi(agrgzy) < WQ(atT9$2)1+26}
and let ©}(0) = [0,27] \ O(0).

We have the following
6.3. Lemma. Let 0 < § < 1/10, and put
(2+26)(1+ 36)

1426 ’

note that p1,p2 < 2. Let t(0) = max(t,,,tp,) and b(6) = max(b,,, bp,) where
the notation is as in Lemma 6.2. Then for all (x1,z2) € X and all t > t(J)

p1=(2-28)(1+16) and pr=

®l(6)
t

Proof. Let us write ©}(0) = 0} ;(0) U ©; 5(d), where

t1(0) = {0 € [0,27] : wy(asrgaxr) < w1 (ayrpms)t 20}
12(0) = {0 € [0,27] : wa(arrpa1) > wi(arrpra) T},

Using Lemma 6.2, for every ¢ > t,, we have

1 2
/ (w1 (a1 )wo (atrgacg)) 1729 49 < / wi (arrgz1 )Pt A
©},1(9) 0

< 271wy (22) + by, -

Similarly, for every t > t,,, we have

1 2T
/ (w1 (arom )wa(arrora)) T2° o < / wa(aroxo)P? df
92,2(5) 0

< 2_t/t”2w1(961) + by,

The claim follows from these two estimates. O
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A Diophantine condition. The following lemma is a crucial input in the
proof of Proposition 6.1.
For every t > 1, let

Pr={veP:e !t <|v| <€}
Pt)={veP:|v|<el}.
6.4. Lemma. The following holds for all A > 103 and all p < 1/(100A). Let

(91,92) € G, there exist t1 > 1, depending on p and polynomially on |g;||,
so that if t > t1, then at least one of the following holds:

(1) We have
#{v1 € Py : vz € P(t),Qo(g1v1, 92v2)| < e’Apt} < 2Pt

where the implied constant depends polynomially on | g;]|.
(2) There exist Q € Maty(Z) whose entries are bounded by e'%?* and A € R

satisfying |’g£191 — )\QH < e~ (A-100)pt

Proof. For simplicity in the notation, let us write n = e™?*. Let A > 103,
and assume that

(6.6) #{v1 € Py: 32 € P(t),|Qo(g1v1, g2v2)| < '} >

E(llgullllg2)"ne.
We will show that if F is large enough, then part (2) holds.

_ a b
hi=gy'g1 = (C d>.

Then (6.6) and the fact that for any ¢ € SL(2,R), A(g) € SO(Qo) imply that
if ¢ is large enough, depending on ||h|, for > ne? many v; = (x1,y1) € P
both of the following hold

e We have |ex; + dy;| > n?el.

e There exists at least one (xa,y2) € P(t) so that

(6.7) Qo(h(x1,y1), (x2,y2))| < 0™

Moreover, the fact that there are > ne? vectors satisfying these two
conditions implies that there are vy, v],v] € Py satisfying the above two
conditions so that

(68) 1< ’QO(an” < 77747 for v,w € {1}171)/1,’0/1/}.

Let us fix three vectors vy, v}, v] satisfying (6.8), and let vy, v}, v be the
corresponding vectors in P(t) satisfying (6.7), respectively. Then

(6.9) hvy = pvy + w1 2

Let us write

where p € R satisfies |u| < 1 and |Jwya|| < nte™" (recall that the implicit
constants in these inequalities are allowed to depend polynomially on ||A]]).
Similarly,

/ ) / " " " 1
hvy = vy +wy 9 and  huy = pivy +wiy
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where 1/, " € R satisfy |1/], || < 1 and ||w] |, [|w],| < ntet.
With this notation we have

(6.10) h(vy v)) = (vg vh) (g /3/) + O(nAe_t)

and similarly for v1,v] and v{,v{. Thus by (6.8)

(611) 1< |QO(U27U5)‘ s ‘QO(U2avé’)‘ ) ‘QO(’Uéa’Ué’)‘ < 77_4'

In view of (6.8), (6.9), (6.10) and (6.11) the conditions in Lemma 2.2
hold. The claim thus follows from Lemma 2.2 so long as t is large enough
to account for the constant C' in that lemma. O

Proof of Proposition 6.1. Recall that g = (g1, g2). Put
x; = ¢;SLa(Z), fori=1,2.

Let A; > 10% 0 < p < 10 (small), and ¢ > 1 (large) be so that Lemma 6.4
holds for these choices. Put § = 2p%/A;, and define ©;(5) and ©}() as
in (6.5) with ¢ and § and z;. That is,

0.(9) = {9 € [0, 2] : wg(atr(;xg)l*% < wi(agrgzy) < wg(atrgxg)HQ‘s},

and ©4(5) = [0, 27] \ ©.().

Apply Lemma 6.4 with A = A; and p. If part (2) in that lemma holds,
then part (2) in Proposition 6.1 holds and the proof is complete. Thus,
assume for the rest of the argument that part (1) in Lemma 6.4 holds. We
will show that part (1) in the Proposition 6.1 holds.

Motivated by the definition of f and Lemma 2.4, define

- —1
(6.12)  @(arg; gT) = sup{(Hatrgglvlﬂ||atrgggv2H) : (v1,v9) € 732(9)}

where P is the set of primitive vectors in Z? and P?(g) denotes the set
of (v1,v2) € P? so that {(g1v1,0), (0, gav2)} is not a spanning set for any
(p, A1, t)-special subspace of gZ*, see Definition 2.3.

It follows from the definition that

(6.13) &)(atr(;; gF) < wy(agroxy)we(airgzs).

Put By = {0 € [0,27] : @(arg; gT) <wi(agroxy)wa(arroza)}
By a variant of Schmidt’s Lemma, see also [EMM98, Lemma 3.1], and
the definition of f, we have

(6.14) flarre; gT) < & (agro; gT).

Put C; = {6 € [0,2n] : @(asrg; gT) > €417}, In view of (6.14) and with this
notation, it suffices to show that

(6.15) / w(arrg; ') d < e PHAL,
Ct
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Contribution of B;. Recall that if w(hSLy(Z)) > 2 for some h € SLy(R),
then there is some v, € P so that
(6.16)  ||hvp| "t = w(hSLa(Z)) and  |hwv|| > 1/2 for all v, # v € P.
Let 0 € B;. By the definition of &, there exist v1,v9 € P so that
&(arrg; gT) = llarogrvr]| " lairagave|| " -
Since @(airg; gI') < wi(aregil1)wa(airegel's), we conclude that
min{ [|agrggrvi]| ", llasragava| '} < 2.
Therefore, for all such 6, we have
w(atrg; gT') < 2max{wi(airggil'1), wa(arregel'2)}-
Thus using Lemma 6.2, we have
A
/ @(agrg; gT) do < e / @(asrg; gT)3/% do
Btﬂét By

(6.17)

Aqpt Aqpt

27
< 2e Tz / w1 (atrgscl)% + wl(atrng)% dd < e 2.
0

Let ©¢(0) and ©}(d) be as above, and put
C(8):=CnBNO,6) and Cl(5) :=C BN OLO).

We consider the contribution of these two sets to [ @ separately — indeed,
controling the contribution of C;(d) occupies bulk of the proof.

Contribution of C/(§). By Lemma 6.3, for all ¢ large enough, we have
1+1s
/ (w1 (atrgxl)wg(atrgxg)) 27d <« 1
©1(9)
From this and (6.13), we conclude that

/é/(é)d)(atrg;gf) do < /é’(é) w1 (airgzy)wa(agroza) d
6.18) :

1
< e_‘;pAlt/Q/ (w1(atrem)wz(atmxz))HQ(S d6 < e,
©3(9)

Contribution of C;(6). Recall that
0.(8) = {0 € [0,2n] : wg(atrgxg)l_% < wi(arexy) < wg(atr9x2)1+25},

and C;(8) = C, N BY N ©,(0). Note that the vectors which contribute to
(6.19) / W(a¢re; gI') do
Ce(9)

satisfy {(g1v1, g2v2) : [[grv1]], [lg2va|l < €'}. It is more convenient to consider
the cases ||g1v1]| > [|gavz2]| and ||g1v1]| < ||g2v2]| separately. As the arguments
are similar in both cases, we assume ||giv1|| > [|gav2]| for the rest of the proof.
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Recall our notation: for ¢t > 1
Pr={veP et < ||| <€},

and P(t) = {v € P:|v|| <e'}.
For every n € N with n < ¢t + log|lgi|| + 1 =: t;, we investigate the
contribution of P, to (6.19). For any vy € Py, let
I, = {0 € 10,27 : ||asrogivi|| < 1/10}.

Then the intervals I, are disjoint. Let P, = {v; € P, : I, N C;(8) # 0}.
Fix some n € N, n <t;. Let v; € P, and let 6 € I,, NC¢(d). Then there
exists vy € P so that

1

lasrogrv || lasrogav]l®

w(arrg; g') =

Since 6 € By, we have w(arg; gI') = w1 (arrgx1)we(arrgxs). Thus
(6.20) wilarer;) = lagrogivi| " for i =1,2.
In view of (6.20), and the definitions of B; and ©.(f), thus

(6.21) / w(ayre; gI') df < ZZ/ lasrogivs || 2.
G+(6) i

We also makeNSOIne observations. Fix some n € N, n < t;. Let v; € 75n
and 0 € I,, NCy(6), and let v € P be so that (6.20) holds. That is,
wi(agroz;) = ||agragivi| ™', for i = 1,2, and

- —1

@(arre; gT) = (llasrggrvi|| llacragavall)
Since 6 € C;, we have Q(agre; gT') > eA1Pt. This gives
lairogiv || [|airagave|| < e~ 417,

which implies that

|Qo(A(aira) (9101, g2v2)) | = |Qolarregivy, arrggove)| < e 4178

Since A(atrg) € SO(Qo), we conclude from the above that

(6.22) Qo(g1v1, gava) < e 1Pt
We claim:
(6.23) lgrvi]| > e

Indeed if || g1v1 || < e, then since ||gave|| < ||g1v1]], it follows from (6.22) that
{(g1v1,0), (0, gav2) } spans a (p, A1, t)-special subspace. This contradicts the
definition of @ and establishes (6.23).

Let us now return to estimating (6.21); we will estimate the sum on the
right side of (6.21) using the following elementary fact.
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Sublemma. Lett > 0, and let w € R? be a non-zero vector. Then
2
/ HatTGwaQf% de < 064&”“}”72726
0

where C is absolute.

First note that (6.22) and the fact that part 1 in Lemma 6.4 holds imply
that exist ¢ty and C so that for all {5 < n < t1, we have

(6.24) #P, < Cel2=Pn,

Also recall from (6.23) that ||giv1|| > €', which in particular implies that
|lv1]] > ePt. Since v; € Py, we conclude that n > pt + O(1). Thus (6.24)
and the Sublemma imply that

Z i Haﬂ’ag1v1\|72725 do < 6(27,0)71646756(72726)71
(625) v1€75n 1
< e—p2t646t < 6—2&

in the last inequality, we used p? = A16/2 > 1005 and assumed t is large.
We now sum over all n < ¢; and get that

Z Z/ ||atrgglv1|]72f26 < te™ Pt < 70,
nop, Ml

This and (6.21) complete the proof in this case.
In combination with (6.18) and (6.17), the proof is complete. O

Proof of the Sublemma. Without loss of generality, we may assume w =
(0,1). Put

I=[e2200 op (2R and ' = (0,27 \ L.

/2’r de <</ do +/ d6
o llagrewl|>+2° r llagrowl?*2° [ [Jagrow]||2+20

do
< (2420}t (2420}t /
T Targwl

do
< 46t .
=¢ +/1 lacrgw] 772

We now compute the integral over I. Note that ||a;rgw]||*1?0 > (2120192420,

Therefore,
de
(226)15/ —2-25
Le 0 dé
/1 lagrow||*20 I

—2-26)t ,(1+26) (2—26)¢

Then

< el < e W
The proof is complete. O

We end this section with the proof of Lemma 3.2.
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Proof of Lemma 3.2. We begin with part (1). Recall that f; is the charac-
teristic function of {w € R? : |w|| < R}, and let f = fifo. Again by a
variant of Schmidt’s Lemma, we have
F(A(arg)gl’) < wi(91SLa(Z))wa(g2SLa(Z))
Let 6 = n/10. As it was done in (6.5), define
O4(0)= {9 € 0,27 :wa(arrgz2) =2 < wi(agrgzy) < wz(atT9$2)l+25}

and let ©}(0) = [0,27] \ ©4(d) where x; = ¢;SLa(Z). Then by Lemma 6.3,
we have for all ¢ > ¢(0)

(6.26) / f(A(atrg)gF’) do < / (wl(atrgzvl)wQ(atrgxg)) df <« 1
CAC)! CAQ)

the implied constant depends polynomially on the injectivity radius of gI"”.
We now find an upper bound for the integral over ©.(9):

/ F(A(agrg)gl’) df < /Wl(atrex1)2+25 10
O¢(8)

This, the sublemma, and standard arguments (which simplify significantly
thanks to (6.16)), see e.g. [EM22], imply that

/ F(Aarg)gl’) df <
©:(9)

The claim in part (1) of the lemma follows.

We now turn to the proof of part (2). Let (v1,0) and (0,v2) be as in the
statement. For ¢ = 1,2 let w; = g;v;. By a variant of Schmidt’s Lemma,
(6.27) () < llagrguwn]| ™ llagrgws|| ™" .

For i =1,2, set
L;={0:R e /10 < lagrows| }
If 0 ¢ I; N I, then f(#) > €. This, (6.27), and the definition of Cy, imply
R 1
ﬂ@g/ :
cr nnt llagrow || flairows||

Thus, using Cauchy-Schwarz inequality, we need to find an upper bound for

(/ do )1/2(/ do )1/2
1 [lagrow: || 1 llagrowa|*/

The computation is similar to the one in the proof of the sublemma.
Indeed, we may assume w; = (0, 1); then there is R™! < ¢ < 1 so that

I; C [ee” 0t 27 — ce= (4,

From this, we conclude that

do
/ | < e,
1; [|asrgw]]

as it was claimed. O
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7. PROOF OoF THEOREM 3.1

In this section, we will prove Theorem 3.1. The proof combines a lower
bound estimate, which will be proved using Theorem 1.4, with an upper
bound estimate, which follows from Proposition 6.1, as we now explicate.

Proof of Theorem 3.1. Recall that f; € C°(R?), and f is defined on R* by
fwi,we) = f1(w1)f2(w2)' We put

(7.1) GT)= > fl
veg Anz
where A = {(v1 + vo, w(v1 — v2)) : v1,ve € Z2} C RY,
I = {(y1,72) € SL2(Z) x SLa(Z) : 71 = wysw (mod 2)}

stabilizes A, and ¢’ = (¢, ¢5) € G. We also put X = G/I".

Let A and p be as in the statement, and let ¢ > 0 be a parameter which
is assumed to be large. Let A be a constant which will be explicated later,
and let g = (g1,92) € G satisfy the following: for every @ € Maty(Z) with

eP’4 < ||Q| < e”* and all A € R we have

(72) gz "9 = AQ| > QI
We claim that (7.2) implies the following:
Sublemma. Let g = (g1, g2) satisfy (7.2). There exists Ay > max(4D, A),

where D is as in Theorem 1.4 so that the following holds. For all t so that
t > 4Dlogt and for every x € X with vol(Hz) < /41 we have

d(gT’, z) > 72,

We first assume the sublemma and complete the proof of the theorem. In
view of the sublemma, part (1) in Theorem 1.4 holds with R = /41 and
t. Indeed, Dp/A; < 1/4 and tP < et/*, which imply
hence, part (2) in Theorem 1.4 cannot hold.

For every S, let 1x4 < o5 < 1xg,, be a smooth function with S(ps) <
S*, where

Xe ={z = (z1,22) € X : max(wi(z1),w2(z2)) < o},

see (6.4) — since I is a finite index subgroup of SLo(Z) x SLo(Z) this is
well-defined. Put fg = pgf; we let N be so that S(fs) < SNS(f).

Put n = kop/(2N A1), where kg is as in Theorem 1.4. We will show the
claim in the theorem holds with

A= 3NAA;/kyg, 9 =mn, and o= 173/A3.
First note that
(7.3) p/A = kop/(BNAA)) < n/A=61/A < p/100.
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We now turn to the rest of the argument. Apply Lemma 2.4 with (g1, g2)
and the triple (n/A, A,t). In view of (7.3) and (7.2), Lemma 2.4 implies
that there are at most two (n/A, A, t)-special subspaces.

Denote these subspaces by L and L’ if they exist. For every 6 € [0, 27|,
we write

F(A(arre)gl’) = fs(A(arre)gl”) + fousp(A(arre)gl’) + fop(A(arra)gl”)

where fg = pgf, fcusp is the contribution of gAnZ \ (LUL") to f— fg, and
fsp is the contribution of gA,, N (LU L') to f— fs.

By Theorem 1.4, applied with R = ert/ A , for any smooth function £ on
[0, 27] we have

2w

2m )
fs(Alaire)gT")(60) 6 — / £do / fs dmx| <
0 X
S(fs)S(€)eor/ A" < SNS(f)S(€&)e oA,

If we choose § = e = "ot/ 2NA) "the above is < S(f)S(&)e /2.
Moreover, by Lemma 6.2 applied with p = 3/2 and the Chebyshev’s
inequality, we have

(7.4) ‘ O

(7.5) Sdf < §73/28 = §71/2,

/{GZA(atTG)QF’¢Xs}

This and (7.4), reduce the problem to investigating the integral of f — fs =

feusp + fsp over C:={0 € [0,2n]: f — fg > S}.
Let f be as in (6.2) with /A, A, and ¢. That is:

flhigDy =Y~ f(A(R)v)

veNL(gZ*)

where M(QZ4) denotes the set of vectors in ¢Z* not contained in any
(n/A, A, t)-special subspaces and also not contained in R? x {0} U {0} URZ.
Let C; = {0 € [0, 2] : f(ayrg; gT') > €™ = S}. By the definitions,

/ Fousp( D (arro)gT)E(B) A6 < JIE]|, / Fagro: gT) do.
C Ct

In view of (7.3), e!09/4 is in the range where (7.2) holds, thus Proposi-
tion 6.1, applied with /A and A, implies

 f(A(agrg)gl”) do < e A,
Cy
From these two, we conclude that

(7.6 [ Feunllarm)gr) a0 < el e
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In view of (7.4), (7.5) and (7.6), we have

2 o R
[ it ao— [T eao [ framy
= /C Fap(A(airg)gD)E(0) dO + O(S(£)S(E)e ™ H4%)

where C = {6 : fop(A(agrg) > e}
This completes the proof if we let §; = n and §; = 1?/A3. O

Proof of the Sublemma. Let x = (h1,h2)I” be so that Hz is periodic. In
view of (the by now standard) non-divergence results, we may assume ||h;|| <
1 where the implied constant is absolute, see e.g. [LM21, §3].

Since I" is a finite index subgroup of SLy(Z) x SLg(Z), we conclude

{(h,h) : h € SLy(R)} [ |(h1SL2(Z)hy ") x (haSLa(Z)hy ")

is a lattice in {(h,h) : h € SLy(R)}. This implies that hiSLy(Z)h;' and
thLg(Z)th are commensurable. Hence, h;lhl belongs to the image of
GLJ (Q) in SLz(R), i.e., the commensurator of SLa(Z) in SLa(R).

Let Q' € Mato(Z) be so that hy'hy = AQ’, where A = (det Q')*/2. Since
|hi|| < 1, we have

(7.7) Q' < vol(Hz) < [|Q'||™

where Ay < 1 < Ajs and the implied constants are absolute, see e.g. [LMW22,
Lemma 16.2].

We will show the sublemma holds with Ay = 4DA/Ay. Assume now
contrary to our claim in the sublemmsa that vol(Hz) < e”/41, for some A,
which will be determined later, and that dy (gI",z) < e~*/2.

Thus g1 = e1h1y1 and g2 = eahays where |¢] < e /2 and (m1,72) € T.
Since ||h;]| < 1, we conclude ||v;]| < ||gi||. Moreover, we have

(78) g5 g1 =er hyim
where |e]| < e %2 and the implied constants depend on ||g;||. Put Q@ =

Y5 1Q"y1. Then
QI < Q]| < ez < ert/4

where we used (7.7), vol(Hz) < ef/41 and assumed t is large. Moreover,
using (7.8) and (7.7), we conclude that

(7.9) o3 01 — AQ|| < 72 || Q|| < e H/2 - ept/(Ardz)

where the implied constants depend on ||g;]|.

Assuming t is large enough to account for the implied constant and using
A} = 4DA/As, the left side of (7.9) is < e #*. Thus (7.9) contradicts (7.2)
and finishes the proof of the theorem. O
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