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1. Introduction

In this note we intend to describe some dynamical properties of one-
parameter unipotent flows on the frame bundle of a convex cocompact hy-
perbolic 3-manifold.

Much effort and study have been done in the case of manifolds with finite
volume, and quite a rich theory is developed in this case. The case of
infinite volume manifolds, however, is far less understood. The goal here
is to highlight some of the difficulties one faces, and possible modifications,
in extending techniques developed in the finite volume case to the case of
infinite volume manifolds.

Throughout, G = PSL2(C), the group of orientation preserving isometries
of the hyperbolic space H3. We let Γ be a Zariski dense discrete subgroup
of G which is convex cocompact, that is, the convex hull of the limit set of Γ
is compact modulo Γ. Equivalently, Γ\H3 admits a finite sided fundamental
domain with no cusps.

The frame bundle of the manifold Γ\H3 is identified with the homogeneous
space X = Γ\G. Certain subgroups of G will be of particular importance in
the sequel. Let K = PSU2, A = {as : s ∈ R}, and N = {nz : z ∈ C}, where

as =

(
es/2 0

0 e−s/2

)
and nz =

(
1 0
z 1

)
.

Any one-parameter unipotent subgroup of G is conjugate to

(1) U = {ut :=

(
1 0
t 1

)
: t ∈ R}.

The flow considered here is indeed the right action of U on X.
One possible starting point is to study ergodicity 1 of this action with

respect to natural measures on X. If X has finite volume, then Moore’s
ergodicity theorem [10], implies that this flow is ergodic with respect to the
volume measure, i.e. the G-invariant measure. If Γ is not a lattice, however,
the volume measure is not ergodic for the action of N . It turns out, in this
case the interesting measure to consider is the so-called BR measure. This

The author is supported in part by NSF Grant 1200388.
1Any invariant Borel subset is either null or co-null.
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BURGER-ROBLIN 2

is an infinite measure when Γ is not a lattice, and is the volume measure
when Γ is a lattice.

We now describe a construction of the BR measure. Let Γ be as above,
and let δ denote the critical exponent of Γ. Fix o ∈ H3 stabilized by K,
and denote by νo the Patterson-Sullivan measure on the boundary ∂(H3)
associated to o ([13], [19]), we will refer to it as the PS measure. Using the
transitive action of K on ∂(H3), we lift νo to a measure on K trivially, and
continue to denote this extension by νo. Using the Iwasawa decomposition,
G = KAN, we define a measure on G:

Burger-Roblin (BR) measure. Define the measure m̃BR on G as follows:
for ψ ∈ Cc(G),

m̃BR(ψ) =

∫
G
ψ(kasnz)e

−δsdνo(k)ds dz,

where ds and dz are Lebesgue measures on R and C respectively. It is left
Γ-equivariant and right N -invariant. The BR measure, mBR, is a locally
finite measure on X induced by m̃BR. It is an infinite measure except when
δ = 2, in which case it is the G-invariant measure on X. It is shown in
[1], for surfaces, and in [17], in general, that the BR measure is the unique
N -invariant ergodic measure on X, not supported on a closed N -orbit 2.

The question we are interested in is: whether the BR measure is ergodic
for the action of U. The answer to this question turns out to depend on δ.
The following is the main result in [11].

Theorem 1.1. Let Γ be a Zariski dense convex cocompact subgroup. The
action of U on X is ergodic with respect to mBR if and only if δ > 1. 3

The rest of this note is devoted to describing ideas involved in the proof
of Theorem 1.1.

We close this section by mentioning that since in the interesting case,
i.e. δ < 2, the BR measure is an infinite measure, the usual approach,
using the study of L2(X,mBR), falls short in proving ergodicity. It is also
worth mentioning that a priori it is not even clear that the action of U is
conservative, that is: for any subset B of positive measure the {ut}-orbit
of almost every point in B spends infinite amount of time in B. Indeed
one of the ingredients in the proof is to show that when δ > 1 the flow is
conservative and in the case δ ≤ 1 the flow does not have certain recurrence
properties which are necessary for ergodicity.

Acknowledgment. This note is based on a joint work with Hee Oh, to
whom the author is grateful.

2The result in [17] is much more general.
3Understanding all U -invariant ergodic Radon measures seems to be a very interesting

and difficult problem.



BURGER-ROBLIN 3

2. Properties of the BR measure.

The proof of Theorem 1.1 is based on a careful study of conditional mea-
sures of mBR and its push-forward, (a−s)∗m

BR, along the N -leaves. It turns
out that the a lot of the “interesting” dynamical properties of the action of
A, and that of N, on (X,mBR) are in fact governed by a probability mea-
sure on X, the so called BMS measure. In this section we describe local
structure of the BR and the BMS measure, and state an important result,
due to Roblin, relating these two measures.

Retain the notation from the introduction. Further, let M denote the
centralizer of A in K. Indeed the unit tangent bundle, T1(H3), is identified
with G/M. We let π : T1H3 → H3 denote the natural projection.

Recall that a collection of nonzero finite Borel measures, {µx : x ∈ ∂H3},
on ∂H3 is called Γ-invariant conformal density of dimension δν if for any
x, y ∈ H3, γ ∈ Γ, and ξ ∈ ∂H3 we have

γ∗µx = µγx and
dµy
dµx

(ξ) = e−δµβξ(y,x).

Fix two Γ-invariant conformal densities µ and µ′ of dimension δµ and δµ′ .
Following Roblin, we define a left Γ-equivariant right M -invariant measure
m̃µ,µ′ on G as follows: fix o ∈ H3 and identify T1(H3) with

(∂(H3)× ∂(H3)− {(ξ, ξ) : ξ ∈ ∂(H3)})× R,
via the map x 7→ (x+, x−, βx−(o, x)). Here x± ∈ ∂H3 denote the end points
of the corresponding geodesic, and for any ξ ∈ ∂H3, βξ is the Buseman
function based at ξ. Define

m̃µ,µ′(x) = eδµβx+ (o,π(x)) eδµ′βx− (o,π(x)) dµo(x
+)dµ′o(x

−)dt, 4

Since µ and µ′ are Γ-invariant, this defines a left Γ-equivariant measure
on T1H3. We lift this to an M -invariant measure on G. Let mµ,µ′ denote
the measure induced by this measure on X = Γ\G. This measure is quasi-
invariant under the action of as. Indeed

(2) asm
µ,µ′ = e(δµ−δµ′ )s mµ,µ′ .

With this notation, the Haar measure on X corresponds to µ = µ′ = m,
the (2-dimensional) G-invariant density on ∂H3. Let ν denote the unique (δ-
dimensional) Γ-invariant geometric density on ∂H3 supported on the limit
set, Λ(Γ), of Γ. This will be referred to as the Paterson-Sullivan (PS) density,
see [13] and [19]. With our choice of Γ, the PS measure coincides with the
δ-dimensional Hausdorff measure of the limit set of Γ. Put

mBR = µm,ν , and mBMS = µν,ν ,

We will refer to these measures as the BMS and the BR measures. The
above definition coincides with the definition of the BR measure given in
the introduction. It follows from (2) that mBR is a finite measure if and

4See Hee Oh’s article in this proceeding for further discussion of this definition.
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only if δ = 2, i.e. if and only if Γ is a lattice, ([21],[19]). Similarly we get
that the BMS measure is A-invariant.

For later use, let us record here that supp(mBR) is Γ\{g ∈ G : g− ∈ Λ(Γ)},
and supp(mBMS) is Γ\{g ∈ G : g± ∈ Λ(Γ)}. In particular when Γ is convex
cocompact the BMS measure has compact support, and is a finite measure5.

The important properties of the BR and the BMS measure that will be
used here are listed in the following theorem. Of particular interest to us
is (3) in this Theorem, which is [17, Theorem 3.4]. This relates the BR
measure, which is an infinite measure and {as} quasi invariant, to the BMS
measure which is a finite measure and {as} invariant. Indeed we loose the
N -invariance in this transition, but since the conditional measures of the
BMS measure along the N -leaves are δ-dimensional Hausdorff measures,
they still carries quite a lot of information.

Theorem 2.1 ( [3], [17]). Let Γ be as before and normalize so that mBMS

is a probability measure.

(1) The action of {as} on X is mixing with respect to mBMS, that is, for
any ψ1, ψ2 ∈ L2(X,mBMS), as s→ ±∞,∫

X
ψ1(gas)ψ2(g) dmBMS(g)→ mBMS(ψ1)m

BMS(ψ2).

(2) mBR is the unique N -ergodic measure on X which is not supported
on a closed N -orbit.

(3) for any ψ ∈ Cc(X) or for ψi = χEi for bounded Borel subsets Ei ⊂ X
with mBMS(∂(Ei)) = 0,∫
X
ψ1(ga−s)ψ2(g) dmBR(g)→ mBMS(ψ1)m

BR(ψ2) as s→ +∞.

In the sequel, specially when applying this theorem, we will need to take
“nice” local neighborhoods. The following is the definition which will be
used: A subset E ⊆ X is called a BMS box if E = x0N

−
ρ AρNρM where

x0 ∈ supp(mBMS), ρ > 0 is at most the injectivity radius at x0 and Sρ means
the ρ-neighborhood of e in S for any subset S of G.

3. Recurrence properties of the action of U and Theorem 1.1

In this section we describe the proof of Theorem 1.1, module the “Window
Theorem” which will be stated and used as a black box. The proof of window
theorem will be explained in the next section.

As was mentioned in the introduction for an infinite measure, L2 con-
siderations are not enough in proving ergodicity. Our proof is based on

5The BMS measure is a finite measure for any geometrically finite group, [20].
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the polynomial divergence of unipotent flows. We investigate the “inter-
mediate range” for two orbits of the unipotent flow and produce extra in-
variance 6. The study of unipotent orbits in the intermediate range is not
new, by any means, and has been used successfully in several prior works,
e.g. [7, 8], [15, 16], [6] and [2].

Let us explain the proof in the case of a finite measure. Suppose µ is an
N -invariant and ergodic probability measure on X. Further, let us assume
that µ is an “interesting measure”, e.g. it is not supported on a closed N
orbit. Actually for the sake of simplicity here, we will assume that we can
find xn and yn = xngn which are generic for the action of U, in sense of the
Birkhoff ergodic theorem, such that

(g-1) gn → e,
(g-2) the (1, 2) entry of gn, which will be denoted by (gn)12, is non-zero,
(g-3) the real and the imaginary parts of (gn)12 have comparable sizes. 7

Now for any f ∈ Cc(X) we have

(3)
1

T

∫ T

0
f(•ut)→

∫
X
fdµ•, for • = xn, yn

where µ• denotes the corresponding ergodic components of µ.
We now compare the two orbits xnut and ynut. Properties (g-2) and (g-

3) imply that the divergence, in the transversal direction to U, is given by
u−tgnut. The matrix entries of u−tgnut are polynomials of degree at most
2, and the fastest divergence is along the (2, 1)-entry, which is a polynomial
of degree 2. This polynomial is (i) non-constant, (ii) has size roughly 1,

certainly nonzero, if t ∈ [(1− ε)T, T ] for small ε and T of size 1/
√
|(gn)12|,

and (iii) u−T gnuT ∈ N − U, when T is of size 1/
√
|(gn)12|.

This special behavior of unipotent orbits in the intermediate range, and
the fact that (3) holds not only for [0, T ] but also for short intervals like
[(1 − ε)T, T ], imply that: if xn and yn are chosen from a “good” set in the
sense that

(1) the convergence in (3) is uniform on this set, and
(2) {xn}, {yn} are in a compact set where the map, • 7→ µ•, is continuous

on this set 8,

and if we suppose xn → x, then µx is invariant under an element in N −
U. This and N -ergodicity of µ, using commutativity of N and standard
arguments, will imply that µ is U -ergodic.

6The fact that polynomial divergence can be used to prove ergodicity of unipotent flows
is due to Margulis.

7This last condition is admittedly stating quite precise information about the struc-
ture of the “generic set” and in general is not easy to guarantee without having some
information about the A-action on this measure space.

8Indeed by Egorov and Lusin’s theorems, these hold on a set of “almost” full measure.
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This argument is indeed an important step in Ratner’s proof of measure
classification theorem. Arguments of this kind, in topological context, are
crucial in Margulis’ proof of the Oppenheim conjecture.

The proof of Theorem 1.1 is along the lines of the above argument. How-
ever there are some rather serious difficulties in carrying out this idea, which
we now discuss. The first difficulty is that in order for this argument to even
start, one needs to have an ergodic theorem for the action of U. The suit-
able ergodic theorem is the Hopf ratio ergodic theorem. The form which
we need, see [11, Theorem 7.4] and references there, is as follows: let µ
be a U -invariant and conservative measure on X, and let ψ ∈ L1(X,µ) be

non-negative. Then for µ-a.e. {x :
∫ T
o ψ(xut)dt→∞}, we have

∫ T
0 f(xut)∫ T

0 ψ(xut)dt
→ µx(f)

µx(ψ)
, for any f ∈ L1(X,µ).

Note that the Hopf ergodic theorem only kicks in if we have already estab-
lished that the action of U is conservative, which, by Poincaré recurrence,
is immediate in the case of a probability measure. We have the following,
see [11, Theorem 6.6] and [11, Theorem 9.4].

Theorem 3.1. Retain the above notation.

1. If δ > 1, then the action of U is conservative for mBR.

2. Suppose either that 0 < δ < 1 or that Λ(Γ) is a purely unrectifiable
1-set. Then the action of U on X is not strongly recurrent for mBR.
In particular mBR is not U -ergodic.

Let us recall from [11, Definition 9.3] that a measure preserving flow {ut},
on a σ-finite measure space (X,µ), is called strongly recurrent if for any two
non-null measurable subsets B1, B2, we have {t : xut ∈ B2} is unbounded
for µ-a.e. x ∈ B1. It follows from the Hopf ratio ergodic theorem that any
non-transitive ergodic action of U is strongly recurrent.

The proofs of the above statements are based on the general philosophy
that the support of the BMS measure controls “a lot of” the dynamics of the
action of U, and the action of A. The proofs also use some standard facts
from geometric measure theory regarding dimension of projections, slices of
certain measures, and some properties of condensation points.

Thanks to this theorem, we need to prove ergodicity in the case of δ > 1.
Thus we assume δ > 1 for the rest of the argument. The algebraic part of the
above argument goes through without change. That is: if we can find xn,
and yn = xngn, where gn’s satisfy properties g-1,2,3, then we can construct
a non-trivial polynomial of degree 2 in the (2,1) matrix entry which governs
the fastest divergence of the two orbits xnU and ynU .

Let us continue to denote points by xn, and yn = xngn. In order to get
an element in N − U, which is the goal of the argument, it is essential to
consider times in the intermediate range, i.e. when the the two orbits are
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roughly size one apart from each other. Indeed a simple matrix multiplica-
tion, considering u−tgnut, implies: this holds for t ∈ [rT, T ], where 0 < r < 1

and T of order of 1/
√
|(gn)12|.

In order to be able to use this algebraic fact, however, one needs to have
some information regarding dynamics of this piece of the orbit. In the finite
measure case it follows from the Birkhoff ergodic Theorem that for a typical
point x, the piece of the orbit, {xut : t ∈ [rT, T ]}, is equidistributed. In the
case of an infinite measure, on the other hands, not only is this not free of
charge, it seems to even be wrong in general 9. This is the main technical
difficulty in carrying out the above outline to the case in hand.

As we will see later our treatment of the main difficulty above makes it
crucial that we are able to find gn’s satisfying g-1,2,3 in “all scales.” The
precise formulation is given in Proposition 3.2, see [11, Proposition 4.4].

Proposition 3.2. Let δ > 1. Fix some BMS box E and some 0 < r < 1.
There exist positive numbers d0 = d0(r) > 1 and s0 � 1 such that for any
Borel subset F ⊂ E with mBR(F ) > r ·mBR(E) and any s ≥ s0, there exists
a pair of elements xs, ys ∈ F satisfying

(1) xs = ysn
−
ws for n−ws ∈ N

−,

(2) 1
d0s
≤ |ws| ≤ d0

s and

(3) |=(ws)| ≥ |<(ws)|d0
.

The above proposition gives a rather precise description of how two generic
points approach each other along contracting leaves. In the case of a prob-
ability measure, conditions similar to this proposition, but weaker, can be
proved using positive entropy. Our proof uses similar tools: we are able to
guarantee this, because the conditional measures of BR along N−, trans-
pose of N, carry quite a lot of information. In particular, the conditional
measure of a ball of radius r in N−, centered at a point in the support of
this conditional, is of order rδ. This fact in view of δ > 1, and a covering
argument implies the proposition.

As we mentioned above the major difficulty in the proof is to get equidis-
tribution of the orbits in the intermediate range of time. The following is
a partial resolution of this problem and is the main technical result used in
the proof of Theorem 1.1, see [11, Theorem 1.4].

Theorem 3.3 (Window Theorem). Retain the above notation and assump-
tions, in particular δ > 1. Let E ⊂ X be a BMS box, and suppose ψ ∈ Cc(X)
be a non-negative function with ψ|E > 0. Then there exist 0 < r < 1 and
T0 > 1 such that for any T ≥ T0,

(4) mBR{x ∈ E :

∫ rT

−rT
ψ(xut)dt ≤ (1− r)

∫ T

−T
ψ(xut)dt} > r

2 ·m
BR(E).

9The author however does not know of an example.
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This theorem is used to control the dynamics when two orbits have moder-
ately diverged. Let us however mention two difficulties one faces in applying
this theorem. First (and more importantly) is that the set in (4), where one
has a “doubling” property of return times for the action of U, depends on
the time parameter T . Hence in order to be able to apply this theorem
successfully, one needs to be able to find “good points”, as above, which are
close to each other in all scales. This is why Proposition 3.2 is essential to
our analysis. In working with an unknown measure a statement of this form
will be difficult to utilize.

Secondly, as in the case of probability measure, we really need equidistri-
bution of [(1− ε)T, T ], for small ε. In order to achieve this; for any fixed n,
we use the window theorem above and a simple covering argument to find
a subinterval, I say, with length εT, where we have the equidistribution for
xn. We then use the fact that the two pieces of orbits {•ut : t ∈ I}, for
• = xn, yn, stay O(1) of each other for t ∈ [0, T ], to show that {ynut : t ∈ I}
is also equidistributed.

4. Proof of the Window Theorem

In this section we describe ingredients involved in the proof of Theo-
rem 3.3. The proof has elements similar to the low entropy method intro-
duced in [6].

Roughly speaking the idea is the following: The BMS measure is an
A-invariant probability measure, and the leafwise measures of BMS along
N are δ-dimensional Hausdorff measure. This, and the M -invariance of
the BMS measure, imply: when δ > 1 the entropy of as along U is non-
trivial. Then, facts relating entropy and leafwise measures, see [6, 2], imply
that the leafwise measures of BMS measure along U restricted to [−1, 1]
satisfy a doubling property on a set of “almost” full measure, see [6, 2] this
is restated in [11, Theorem 6.11]. Now by (3) in Theorem 2.1 we have,
after renormalization, a−sm

BR|E weakly converges to the BMS measure, as
s→∞. Here E is a BMS box fixed once and for all. The goal now is to use
these to prove such doubling properties for the return times of the action of
U with respect to the BR measure.

It is worth mentioning, however, that usually such information cannot be
extracted, e.g. due to discontinuity of the entropy with respect to weakstar
topology. We succeed, essentially, for two reasons:

(i) The BR and BMS measures have the same transversal measures, i.e.
locally, up to normalization, they only differ along N -leaves. This
follows from the definition of these two measure.

(ii) The measures in question, i.e. mBMS and a−sm
BR|E , are quite reg-

ular, see Propositions 4.1, 4.2 below.

Let us now fix some notation to be used in the course of the proof. For
each s > 0, define a Borel measure µBR

E,s on X to be the normalization of the
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a−sm
BR|E : for ψ ∈ Cc(X),

µBR
E,s(ψ) :=

1

mBR(E)

∫
E
ψ(ga−s) dm

BR(g).

It follows from (3) in Theorem 2.1 that µE,s → mBMS in the weak star
topology. We have the following, see [11, Theorem 3.3].

Proposition 4.1. Suppose that x− ∈ Λ(Γ). For all small enough ρ > 0, let
λE,x,s denote the conditional measure of µE,s along xNρ. We have,

lim
s→∞

λE,x,s(ψ) = µPSx (ψ), for any ψ ∈ Cc(xNρ),

The proof of the above proposition draws from the convergence of µE,s to

mBMS, and a rather special feature of µE,s : the conditionals of µE,s along
N -leaves are obtained from a measure on the boundary, and in particular
they change regularly as we move in the transversal direction.

We will now fix a some x with x± ∈ Λ(Γ), and some small ρ > 0, and
investigate λE,x,s. Given some θ ∈ [0, 2π] we let mθ ∈ M denote the corre-
sponding element. Also we will put

Uρθ := {t exp(2πiθ) : t ∈ [−ρ, ρ]} and V ρ
θ := {it exp(2πθ) : t ∈ [−ρ, ρ]}.

For any 0 < τ ≤ ρ, and θ ∈ [0, 2π] we let στx,θ,s, (resp. στx,θ) denote the

projection to V τ
θ of λE,x,s|xUτθ V τθ , (resp. µPSx |xUτθ V τθ ). Furthermore, for any

measure • on R, we let D(•) denote the Radon-Nikodym derivative of • with
respect to the Lebesgue measure.

We unfortunately cannot quite show statement as strong as Proposi-
tion 4.1 for the disintegration of λE,x,s along U -directions. The following
is our replacement, which is [11, Proposition 5.10].

Proposition 4.2. Let si → +∞ be a fixed sequence. For every ε > 0 and
every finite subset {τ1, . . . , τn} of (0, ρ], there exists a Borel subset Θ(x) ⊂M
of measure at least 1− ε such that for any θ ∈ Θ(x) we have

(i) for all 1 ≤ ` ≤ n, the measure στ`x,θ is absolutely continuous with

respect to the Lebesgue measure on xV τ`
θ . Furthermore

D(στ`x,θ) ∈ H
r(xV τ`

θ ), for r = δ−1
4 ,

(ii) there is a subsequence {sij}, depending on (x, θ), such that

D(στ`x,θ,sij
)
L2(xVθ)−−−−−→ D(στ`x,θ), for each 1 ≤ ` ≤ n.

The proof of this proposition uses some techniques from geometric mea-
sure theory. Indeed an essential ingredient in the proof is a uniform bound
for the α-dimensional energy of λE,x,s’s, for some 1 < α, see [11, The-
orem 5.7]. This gives a uniform control on fractional derivatives of the
Radon-Nikodym derivative of the projection of these measures with respect
to the Lebesgue measure, [14, Proposition 2.2] or [9, Theorem 4.5]. The
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L2-convergence in the above then follows from compact embedding theorem
of Sobolev spaces.

The desired energy estimate is proved using: (i) the non-focusing property
of the PS measure, which was also used in the proof of Proposition 3.2, (ii)
the fact that support of µs is contained in O(e−s)-thickening of the support
of BMS, see [11, Lemma 5.6], and (iii) some covering argument.

We can now complete the proof of the Window Theorem. As we men-
tioned above, for the BMS measure the contribution of U to the entropy of
as is non-trivial. Thus there is a set, Ω′, of almost full BMS-measure and
some β > 0, such that

(5) (mBMS)Ux [−β, β] < 1
2(mBMS)Ux [−1, 1], for all x ∈ Ω′,

where (mBMS)Ux denotes the U -leafwise measure. Now suppose the Window
Theorem fails, then there is a sequence ri → 0 and a sequence Ti →∞ such
that

mBR{x ∈ E :

∫ riTi

−riTi
ψ(xut)dt ≥ (1− ri)

∫ Ti

−Ti
ψ(xut)dt} > (1− ri)mBR(E).

Let si = log Ti and denote the set on the left side of the above by E(si, ri).
If we flow this by a−si , and use the definition of µE,si , we get

(µE,si)
U
x ([−ri, ri]) > 1− ri,

for all x in a subset Esi(ri) of E, with µE,x,si(Esi(ri)) > 1− ri.
Now by Fubini’s theorem there is a subset in the transversal direction

to N of measure 1 − ri, such that if the transversal component of x is in
this set, then λE,x,si(xN ∩ Esi(ri)) > 1 − √ri. This set, in the transversal
direction, however depends on i. To find a set which works for all i, we pass
to a subsequence and assume that

∑√
ri < ε, and replace these sets by

their intersection. Altogether: there is some x so that, simultaneously for
all i, we have λE,x,si(xN ∩ Esi(ri)) > 1−√ri.

Indeed this condition is essentially to say that the disintegration of λi =
λE,x,si , as a measure on N, along the direction of U is like a dirac mass.
Note also that since µE,s is M -invariant the above could be done so that the
same holds not only for x, but also for xmθ for “most” θ’s. Hence we have
the slices of λi along Uθ is almost a dirac measure for many directions θ.

It is more convenient for us, however, to work with the projections. Fix
some small τ � β. We take projection of the set Bad•,i = xN• ∩ Esi(ri),
for • = 1, τ, onto xVθ. We have σ1i (Badτ,i) > 1 − 2riσ

1
i (Bad1,i), where σ

denotes the projection of λi onto xVθ. One needs to be cautions, however,
since these sets change as i changes. We need to show that Bad•,i has
almost full PS measure in xN•. If this is established then (5) would give a
contradiction. This thankfully follows from the L2-convergence statement
in Proposition 4.2, see [11, Lemma 5.11]. This completes the proof.
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