HOMEWORK 3

DUE 30 SEPTEMBER 2008

1. The number of nontrivial zeros Define $N(T)$ to be the number of zeros of $\zeta(s)$ in the rectangle $0<\Re(s)<1,0<\Im(s)<T$. This denotes also the zeros of $\xi(s)$ in the same region, where

$$
\xi(s)=(s-1) \pi^{-s / 2} \Gamma\left(1+\frac{s}{2}\right) \zeta(s)
$$

(a) From the argument principle we know that if T is not the imaginary part of some zero, then
$2 \pi N(T)=\Delta_{R} \arg \xi(s)$ the change in the argument of $\xi(s)$ along R, where R is the rectangle with vertices $2,2+i T,-1+i T,-1$ in the counterclockwise direction. Show that actually

$$
\pi N(T)=\Delta_{L} \arg \xi(s)
$$

where L is the path that consists of the line from 2 to $2+i T$ and the line from $2+i T$ to $\frac{1}{2}+i T$.
(b) Estimating the change in the argument of the factors of $\xi(s)$ along L, show that

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+S(T)+O\left(T^{-1}\right)
$$

where $\pi S(T)=\Delta_{L} \arg \zeta(s)=$.
(c) Show that for large T we have

$$
\sum_{\substack{\rho=\beta+i \gamma \\ \text { nontrivial zero }}} \frac{1}{1+(T-\gamma)^{2}}=O(\log T)
$$

(d) Deduce that the number of nontrivial zeros ρ with $|\Im(\rho)-T|<1$ is $O(\log T)$ and that

$$
\sum_{\substack{\rho=\beta+i \gamma,|T-\gamma|>1 \\ \text { nontrivial zero }}} \frac{1}{(T-\gamma)^{2}}=O(\log T)
$$

(e) Show that for large t not coinciding with the imaginary part of a zero and $-1 \leq$ $\sigma \leq 2$

$$
\frac{\zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}=\sum_{\substack{\rho \text { nontrivial zero } \\|\Im(\rho)-t|<1}} \frac{1}{s-\rho}+O(\log t)
$$

Deduce that $S(T)=O(\log T)$.
2. Show that $\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right| \ll \log (2|s|)$.
3. Denote $\delta(y)= \begin{cases}0 & \text { if } 0<y<1, \\ \frac{1}{2} & \text { if } y=1, \\ 1 & \text { if } y>1 .\end{cases}$

We have seen that $\delta(y)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{y^{s}}{s} d s$ for any $c>0$. Now set $I(y, T)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{y^{s}}{s} d s$.
Show that, for $y>0, c>0, T>0$, we have the following estimate

$$
|I(y, T)-\delta(y)|< \begin{cases}y^{c} \min \left(1, \frac{1}{T|\log y|}\right) & \text { if } y \neq 1 \\ \frac{c}{T} & \text { if } y=1\end{cases}
$$

4. (a) Deduce that, with the convention $\Lambda(x)=0$ for non-integer x,

$$
\left|\psi(x)-\frac{1}{2 \pi i} \int_{c-i T}^{c+i T}-\frac{\zeta^{\prime}(s)}{\zeta(s)} \cdot \frac{x^{s}}{s} d s\right|<\sum_{n \neq x} \Lambda(n)\left(\frac{x}{n}\right)^{c} \min \left(1, \frac{1}{T|\log (x / n)|}\right)+\frac{c}{T} \Lambda(x) .
$$

(b) Take $c=1+\frac{1}{\log x}$ in the above inequality. Show that the contribution on the right hand side of the terms corresponding to $|n-x| \leq \frac{x}{4}$ adds up to

$$
\ll \frac{x}{T}\left(-\frac{\zeta^{\prime}(c)}{\zeta(c)}\right) \ll \frac{x \log x}{T} .
$$

(c) Under the same conditions show that the contribution of the terms with $\frac{3}{4} x<n<$ x except the closest prime power to x adds up to $\ll \frac{x \log ^{2} x}{T}$, while the contribution of the closest prime power x_{1} is $\ll \Lambda\left(x_{1}\right) \min \left(1, \frac{x}{T\left(x-x_{1}\right)}\right) \ll \log x \min \left(1, \frac{x}{T\left(x-x_{1}\right)}\right)$.
(d) Write $\langle x\rangle$ for the distance for x to the nearest prime power. Show that

$$
\left|\psi(x)-\frac{1}{2 \pi i} \int_{c-i T}^{c+i T}-\frac{\zeta^{\prime}(s)}{\zeta(s)} \cdot \frac{x^{s}}{s} d s\right| \ll \frac{x \log ^{2} x}{T}+\log x \min \left(1, \frac{x}{T<x>}\right) .
$$

(e) By using the Residue Theorem from complex analysis for the function

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)} \cdot \frac{x^{s}}{s}
$$

along the rectangle $\gamma_{c, T, k}$ with vertices $c-i T, c+i T-(2 k+1)+i T$ and $-(2 k+$ 1) $-i T$ (here k is some positive integer) and then letting $k \rightarrow \infty$ show that

$$
\psi(x)=x-\sum_{\substack{\rho \text { nontrivial zero } \\|S(\rho)|<T}} \frac{x^{\rho}}{\rho}-\frac{\zeta^{\prime}(0)}{\zeta(0)}-\frac{1}{2} \log \left(1-x^{-2}\right)+R(x, T),
$$

where

$$
|R(x, T)| \ll \frac{x \log ^{2}(x T)}{T}+(\log x) \min \left(1, \frac{x}{T<x>}\right) .
$$

Hint: You'll probably need to use the estimates in 1(e) and 2.
5. (a) Using the zero-free region for $\zeta(s)$ we proved in class show that there exists a constant C for which

$$
\sum_{\substack{\rho \text { nontrivial zero } \\|\Im(\rho)|<T}}\left|\frac{x^{\rho}}{\rho}\right|<x(\log T)^{2} e^{-C \log x / \log T}
$$

(b) Take T such that $(\log T)^{2}=\log x$, with x some integer, in the estimates in 4(e) and 5(a) and show that there exists a constant C such that

$$
|\psi(x)-x| \ll x e^{-C \sqrt{\log x}}
$$

(Recall that this proves the Prime Number Theorem!)

