HOMEWORK 2

DUE 16 SEPTEMBER 2008

1. Poisson Summation: Show that for a function f(x) defined on \mathbb{R} , such that $f(x) = O(|x|^{-c})$ for some c > 1, then $\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \hat{f}(n)$, where the Fourier coefficients of f are given by

$$\hat{f}(n) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i n x} \, dx.$$

Deduce that $\theta\left(\frac{1}{t}\right) = \sqrt{t} \,\theta(t)$, where $\theta(t) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 t}$.

- **2.** If χ is a primitive character modulo N and $\tau(\chi) = \sum_{n \mod N} \chi(n) e^{2\pi i n/N}$ is the Gauss sum associated to it, show that
 - (a) $\sum_{n \mod N} \chi(n) e^{2\pi i n m/N} = \overline{\chi(m)} \tau(\chi);$ (b) $|\tau(\chi)| = \sqrt{N};$

(c)
$$\tau(\overline{\chi}) = \chi(-1)\tau(\chi);$$

(d)
$$\chi(n) = \frac{\chi(-1)\tau(\chi)}{N} \sum_{m \mod N} \overline{\chi(m)} e^{2\pi i n m/N}.$$

- **3.** What is the connection between $\tau(\chi)$ and G(n), where χ denotes the Legendre symbol modulo a prime number q > 2 and G(n) is the Gauss sum defined in Davenport, page 7? What is |G(n)|?
- 4. Twisted Poisson Summation: Under the same conditions, prove that

$$\sum_{n \in \mathbb{Z}} \chi(n) f(n) = \frac{\tau(\chi)}{N} \sum_{n \in \mathbb{Z}} \overline{\chi(n)} \, \hat{f}\left(\frac{n}{N}\right),$$

where χ is a primitive Dirichlet character of modulus N.

5. Let χ be a primitive character modulo N.

(a) If
$$\chi(-1) = 1$$
, define $\theta_{\chi}(t) = \sum_{n \in \mathbb{Z}} \chi(n) e^{-\pi n^2 t}$. Prove that
$$\theta_{\chi}(t) = \frac{\tau(\chi)}{N\sqrt{t}} \theta_{\overline{\chi}}\left(\frac{1}{N^2 t}\right).$$

- (b) If $\chi(-1) = -1$, define $\theta_{\chi}(t) = \sum_{n \in \mathbb{Z}} n\chi(n)e^{-\pi n^2 t}$. Prove that $\theta_{\chi}(t) = -\frac{i\tau(\chi)}{N^2 t^{3/2}} \theta_{\overline{\chi}}\left(\frac{1}{N^2 t}\right).$
- 6. Choose a = 0, 1 such that the primitive character χ modulo N satisfies $\chi(-1) = (-1)^a$. Show that the function

$$\Lambda(s,\chi) = \pi^{-\frac{s+a}{2}} \Gamma\left(\frac{s+a}{2}\right) L(s,\chi).$$

satisfies the functional equation

$$\Lambda(s,\chi) = (-i)^a \tau(\chi) N^{-s} \Lambda(1-s,\overline{\chi}),$$

and that, for $\chi \neq 1$, the function $\Lambda(s,\chi)$ has analytic continuation to the whole \mathbb{C} , while, for $\chi = 1$, it has analytic continuation to all s except for simple poles at s = 0 and s = 1.

7. Let k be a number field and \mathcal{O} its ring of integers. We know that the ideals of \mathcal{O} have unique factorization into prime ideals. Show that the following series is absolutely convergent for $\Re(s) > 1$, the convergence being uniform on compact subsets, and that it has the Euler product decomposition

$$\sum_{I \text{ ideal in } \mathcal{O}} \mathbb{N}I^{-s} = \prod_{\mathcal{P} \text{ prime ideal in } \mathcal{O}} (1 - \mathbb{N}\mathcal{P}^{-s})^{-1}.$$

Here $\mathbb{N}I$ denotes the norm of the ideal I, namely the number of elements in the ring \mathcal{O}/I .

8. Let \mathbb{F}_q be the finite field with q elements. Define the zeta function

$$Z(t) = (1-t)^{-1} \prod_{p} (1-t^{\deg p})^{-1},$$

where p ranges over all monic irreducible polynomials p = p(X) in $\mathbb{F}_q[X]$. Prove that Z(t) is a rational function and determine this rational function. What are its zeros? What are its poles? Write down the functional equation that Z(t) satisfies as $t \to \frac{1}{at}$.

- **9.** Show that if $\omega \in \mathbb{C} \setminus \mathbb{R}$ with $L(1, \chi_{\omega}) = 1$, then $\lim_{s \to 1+} L(s, \chi_{\omega})L(s, \chi_{\overline{\omega}})L(s, \chi_1) = 0$.
- **10.** Prove that $-\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}$ for $|z| \le 1$, $z \ne 1$, and log the principal branch of the logarithm.