HOMEWORK 1

DUE 9 SEPTEMBER 2008

This problem set concerns the Γ-function and its properties. It is inspired by a homework given by Noah Snyder at Harvard in 2002 to a bunch of high-school students.

Define $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x} \frac{d t}{t}$.

1. Show that this definition makes sense for all real $x>0$. Furthermore, show by integration by parts that $\Gamma(x+1)=x \Gamma(x)$. Compute $\Gamma(n)$ for a positive integer n.
2. Show that

$$
\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}=\int_{0}^{\infty} \frac{t^{y}}{(1+t)^{x+y}} \frac{d t}{t} .
$$

Conclude that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ and prove the "duplication formula"

$$
\Gamma(2 x) \sqrt{\pi}=2^{2 x-1} \Gamma(x) \Gamma\left(x+\frac{1}{2}\right) .
$$

3. Show that, for $0<a<1$,

$$
\int_{0}^{\infty} \frac{t^{a}}{1+t} \frac{d t}{t}=\frac{\pi}{\sin a \pi}
$$

Hint: Consider $\int \frac{z^{a-1}}{1-z} d z$, taken over a well-chosen path. For instance, it could consists of two circles of radii R and ρ respectively, joined along the negative real axis from $-R$ to $-\rho$.
4. Combine your earlier results to show that

$$
\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x} \quad \text { for } 0<x<1
$$

5. Show that the definition of Γ makes sense for all complex numbers with positive real part. Show that Γ has meromorphic continuation to the whole complex plane. Show that all the formulas you have proved for Γ for real values must be true for all complex values. Find the poles of $\Gamma(z)$, their orders, and compute the residues at those points. Show that $\frac{1}{\Gamma(z)}$ has no poles. Conclude that Γ has no zeros.
6. Prove the product expansions

$$
\sin \pi z=\pi z \prod_{n \neq 0}\left(1-\frac{z}{n}\right) e^{z / n}=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

and

$$
\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}
$$

where γ is Euler's constant given by $\gamma=\lim _{n} 1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n$.

7. Stirling's Asymptotic Formula

Show that for $|z| \rightarrow \infty$ and $-\pi+\delta<\arg z<\pi-\delta$, where δ is any fixed positive number, we have

$$
\log \Gamma(z)=\left(z-\frac{1}{2}\right) \log z-z+\frac{1}{2} \log 2 \pi+O\left(|z|^{-1}\right)
$$

and

$$
\frac{\Gamma^{\prime}(z)}{\Gamma(z)}=\log z+O\left(|z|^{-1}\right)
$$

Here $\log z$ denotes the principal branch of the logarithm.

