WORKSHEET

1. Find the inverse of the transformation obtained by first rotating clockwise with angle $\pi / 4$ and then reflecting about the line $7 x_{1}+24 x_{2}=0$. What happens if we first reflect and then rotate?
2. Find the matrix of the reflection about the plane $3 x_{1}-2 x_{2}+6 x_{3}=0$. Find its inverse.
3. Find the inverse of the projection onto the plane $3 x_{1}-2 x_{2}+6 x_{3}=0$.
4. For the matrix

$$
B=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]
$$

find a matrix A such that $B A=I_{2}$. How many solutions A does this problem have?
5. True or false?
(a) If $A B=I_{n}$ for two $n \times n$ matrices, then

- $\operatorname{rref}(A)=I_{n}$;
- $\operatorname{rref}(B)=I_{n}$;
- $\operatorname{rref}\left[B \mid I_{n}\right]=\left[I_{n} \mid A\right]$.
(b) If $a d-b c=1$, then

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(c) There exists an invertible 2×2 matrix A such that $A^{2}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
(d) The function $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}y \\ 1\end{array}\right]$ is a linear transformation.
(e) The matrix $\left[\begin{array}{cc}5 & 6 \\ -6 & 5\end{array}\right]$ represents a rotation combined with a scaling.
(f) The matrix $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ represents a reflection about a line.
(g) If $A^{2}+3 A+4 I_{3}=0$ for a 3×3 matrix A, then A must be invertible.

