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Chapters 5,6,7 Review
SOLUTIONS PROBLEMS 1-20

Math 52 Spring 2006

1. (a) Express the matrix A =

[
0.5 0
2 1.5

]
as a product SDS−1, where

D is a diagonal matrix.

(b) Find a formula for Ak

[
1
0

]
.

(a) By inspection, the eigenvalues are λ1 = 0.5 and λ2 = 1.5 (since A
is lower triangular). Therefore D should be

D =

[
0.5 0

0 1.5

]

However, to find S requires more work. The eigenspaces are

Eλ1 = ker

[
0 0
2 1

]
= span

{[
1
−2

]}

Eλ1 = ker

[
−1 0

2 0

]
= span

{[
0
1

]}

Therefore an eigenbasis is

B : "v1 =

[
1
−2

]
, "v2 =

[
0
1

]

and

SB→std =

[
1 0
−2 1

]

Sstd→B =

[
1 0
2 1

]
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Note that a different choice of basis for the eigenspaces will give a
different (but still correct) set of change of basis matrices. That’s
fine!

We obtain

A = SB→stdDSstd→B =

[
1 0
−2 1

] [
0.5 0

0 1.5

] [
1 0
2 1

]

which multiplies out correctly.

(b) The fast way to see this is to note that

[
0
1

]
is the eigenvector

for λ2 = 1.5. Therefore

Ak

[
0
1

]
= λk

2

[
0
1

]
=

[
0

1.5k

]

Alternatively, a more general approach is as follows. We have a
representation A = SDS−1, so we see that

Ak

[
0
1

]
= (SDS−1)k

[
0
1

]

= (SDS−1)(SDS−1) . . . (SDS−1)

[
0
1

]

= SDkS−1

[
0
1

]

=

[
1 0
−2 1

] [
0.5k 0

0 1.5k

] [
1 0
2 1

] [
0
1

]

=

[
0

1.5k

]

2. Compute the determinant of the following matrix:




1 −1 −2 6
3 1 2 4
2 0 5 1
−2 3 2 3



 .

The determinant is 306. Try using row operations if you find the
Laplace expansion tedious.
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3. Prove or disprove and salvage if possible:

(a) Let A =

[
a b
c d

]
and define the transpose of A by AT =

[
a c
b d

]
.

Then A and AT have the same eigenvalues.

(b) Every 3× 3 matrix has at least one real eigenvalue.

(c) A real number λ is an eigenvalue of A if and only if λ is an eigen-
value of An for all positive integers n.

(a) Proof: We have

(A− λI)T =

[
a− λ c

b d− λ

]
= AT − λI

Therefore

det((A− λI)) = det((A− λI)T ) = det(AT − λI)

and so the characteristic polynomials satisfy fA(λ) = fAT (λ) and
hence both A and AT have the same eigenvalues.

(b) Proof: The characteristic polynomial of a 3× 3 matrix is a degree
three polynomial. Therefore it has at least one real root (by cal-
culus – e.g. look at limit as λ → ∞ and λ → −∞). And hence
the matrix has at least one real eigenvalue.

(c) Not true! Counterexample:

Consider the scaling

A =

[
2 0
0 2

]

This has eigenvalue λ = 2. But

A2 =

[
4 0
0 4

]

has eigenvalue λ = 4. Therefore the “only if” part is false.
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Salvage (corrected statement): A real number λ is an eigenvalue of
A if and only if λn is an eigenvalue of An for all positive integers n.

Proof of Salvage: If λn is an eigenvalue of An for all positive in-
tegers n, then in particular, λ1 = λ is an eigenvalue of A1 = A.
This proves the “if” part.

For the “only if”, assume that λ is an eigenvalue of A. Then by
definition there is some vector "v such that A"v = λ"v. We proceed
by induction on the claim that “Ak"v = λk"v”.

Base case: The case n = 1 is exactly the statement of our assump-
tion.

Inductive step: Suppose we have proven the claim for n = k. Then

Ak+1"v = AkA"v

= Akλ"v by the initial assumption

= λAk"v

= λλk"v by the inductive hypothesis

= λk+1"v

And we have completed the proof.

4. Either give an example exhibiting the stated properties or prove that
no such example exists.

(a) Square matrices A and B with the same characteristic polynomial
so that A is not similar to B.

(b) A square matrix A which is not diagonalizable.

(a) Let

A =

[
1 0
0 1

]
B =

[
1 1
0 1

]

These two matrices have the same characteristic polynomial, i.e.
(1 − λ)2. They both have eigenvalue λ = 1 with algebraic multi-
plicity 2. However, λ has geometric multiplicity 2 for A and only
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1 for B. To see this geometrically, note that A is the identity,
so the whole space is the eigenspace for λ = 1. However, B is a
shear and shears are not diagonalizable. (If in doubt, verify the
geometric multiplicity by a calculation.)

Note that if A and B are diagonalizable and have the same char-
acteristic polynomial, then they have the same eigenvalues and
are similar to the same diagonal matrix D. Therefore they are
similar to each other (by transitivity of the equivalence relation
“similar”). So to look for an example, we need matrices which are
not both diagonalizable.

(b) The matrix B above is a good example of a nondiagonalizable
square matrix.

5. Assume that

A =




3 4 3
−1 −4 −5

1 8 9





has characteristic polynomial 16 − 20t + 8t2 − t3 = −(t − 2)2(t − 4).
Find the eigenvalues and eigenspaces of A.

The eigenvalues are λ = 2 and λ = 4 of algebraic multiplicity 2 and 1
respectively.

The eigenspace E2 can have geometric multiplicity 1 ≤ g ≤ 2.

E2 = ker




1 4 3
−1 −6 −5

1 8 7



 = span









−1

1
−1










Note that this is clearly the kernel since the rank of the matrix is 1 (the
first two columns are obviously independent since one is not a multiple
of the other). So the geometric multiplicity of E2 is g = 1.

The eigenspace E4 must have geometric multiplicity 1.
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E4 = ker




−1 4 3
−1 −8 −5

1 8 5



 = span









1
−2

3










This matrix is not diagonalizable since the geometric multiplicities only
add up to 2.

6. Let T : P2 → P2 be defined by T (f) = f + f ′ + f ′′. Find an eigenbasis
for T .

First we must find the matrix for the transformation. We will use the
basis

B : 1, t, t2

The transformation acts as follows:

T (a+ bt+ ct2) = a+ bt+ ct2 + b+2ct+2c = (a+ b+2c)+(b+2c)t+ ct2

Therefore its matrix is

[T ]B =




1 1 2
0 1 2
0 0 1





There is only one eigenvalue: λ = 1. The associated eigenspace is

E1 = ker




0 1 2
0 0 2
0 0 0



 = span









1
0
0










This transformation does not have an eigenbasis, since there are not
enough eigenvectors to form one.
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7. Let

"v1 =




−1

2
2



, "v2 =




1
−1

0



, "v3 =




0
1
0



.

These vectors form a basis of R3. (Note: you do not have to show this.)

(a) Use the Gram-Schmidt process on these vectors to produce an
orthonormal basis of R3.

(b) Let T : R3 → R3 be the orthogonal projection of R3 onto the sub-
space spanned by "v1 and "v2. Write down a matrix representing T.
Hint: your work in part (a) might be useful.

(a) The Gram-Schmidt process gives the result

"u1 =
1

3




−1

2
2



 , "u2 =
1

3




2
−1

2



 , "u3 =
1

3




2
2
−1





Remember to check the result by quickly dotting the vectors pair-
wise in your head to make sure you get 0 or 1 where appropriate.

(b) Recall that the Gram-Schmidt orthogonalization process tells us
that

span {"v1, "v2} = span {"u1, "u2}

Let

Q =
1

3




−1 2

2 −1
2 2





Then

QQT =
1

9




−1 2

2 −1
2 2




[
−1 2 2

2 −1 2

]
=

1

9




5 −4 2
−4 5 2

2 2 8




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8. Let

A =




−2 5 6

1 0 0
0 1 0



.

(a) Find the characteristic polynomial of A. What are the eigenvalues
of A? Hint: It factors!

(b) Find an invertible matrix S and a diagonal matrix D so that
A = SDS−1. Hint: If this is painful or impossible, you may have
found the wrong eigenvalues!

(a) The characteristic polynomial is

fA(λ) = −λ3 − 2λ2 + 5λ + 6 = −(λ + 1)(λ + 3)(λ− 2)

You can factor it by testing and seeing that λ = −1 is a root, and
proceeding from there. The eigenvalues of A are −1, −3, and 2.

(b) The eigenspaces will all have dimension one and are

E−1 = ker




−1 5 6

1 1 0
0 1 1



 = span









−1

1
−1










E−3 = ker




1 5 6
1 3 0
0 1 3



 = span









9
−3

1










E2 = ker




−4 5 6

1 −2 0
0 1 −2



 = span









−4

2
−1










We have

S =




−1 9 −4

1 −3 2
−1 1 −1




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S−1 =
1

2




−1 −5 −6

1 3 2
2 8 6





D =




−1 0 0

0 −3 0
0 0 2





So

A =




−1 9 −4

1 −3 2
−1 1 −1








−1 0 0

0 −3 0
0 0 2







1

2




−1 −5 −6

1 3 2
2 8 6









9. Let

A =




1 2 −1
2 3 0
−1 0 4



.

True or false?

(a) A is invertible.

(b) A has rank 2.

(c) There exists a basis of eigenvectors for A.

The determinant is an easy calculation expanding along the third row
or column:

det(A) = (−1)(3) + 4(−1) = −7

Hence we know it is invertible and has rank 3.

(a) True

(b) False

(c) True (However, this relies on the observation that symmetric ma-
trices are always diagonalizable. This was not covered in the
course. It shouldn’t be on the review, because the characteris-
tic polynomial isn’t easily factored, so you can’t see this directly.)
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10. Let

B =
1

2





1 1 0 1
0 0 1 0
0 1 0 1
1 0 1 0



.

True or false? (Do these without calculating the characteristic polyno-
mial.)

(a) B has rank 4.

(b) λ = 0 is an eigenvalue for B.

(c) λ = 1 is an eigenvalue for B.

(d) All eigenvalues of B satisfy |λ| = 1.

(a) False. The second and fourth columns are the same.

(b) True. To see if a particular value is an eigenvalue, we consider the
nullity of B−λI = B. Since B does not have rank 4 (by (a)), the
nullity is nonzero and therefore 0 is an eigenvalue.

(c) True. We have

B − 1(I) =
1

2





−1 1 0 1
0 −2 1 0
0 1 −2 1
1 0 1 −2





(Don’t forget the 1
2 when you calculate this!) This matrix has

determinant 1
16 [(−1)((−2)(3)− 1(−2))− 1(1(1) + 1(3))] = 1

16 [4−
4] = 0 and so it has nonzero nullity. This means λ = 1 is an
eigenvalue.

(d) False. Since (b) is true.

11. Let M2 denote the vector space of all 2× 2 matrices and B =

[
2 6
0 3

]
.

(a) Let T be the linear transformation from M2 to M2 defined by
T (C) = B−1CB. Consider the basis for M2 consisting of

E1 =

[
1 0
0 0

]
, E2 =

[
0 1
0 0

]
, E3 =

[
0 0
1 0

]
, E4 =

[
0 0
0 1

]
.
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The 4 × 4 matrix A =





1 0
3 −3
0 0
0 1



 represents T with

respect to the basis E1, . . . , E4. Supply the entries in the 2nd and
3rd columns of A.

(b) Find all numbers λ for which there exists a nonzero 2× 2 matrix
C with B−1CB = λC. Hint: use the results in part (a). This is a
chapter 7 problem!

(a) This question was on a previous review.

T (E2) =
3

2
E2

T (E3) = −2E1 − 6E2 +
2

3
E3 + 2E4

A =





1 0 −2 0
3 3

2 −6 −3
0 0 2

3 0
0 0 2 1





(b) Note that the question is asking you to find all eigenvalues of the
transformation T. This can be done using the matrix found in part
(a). We calculate the characteristic polynomial of A expanding
down the first column:

fA(λ) = (1− λ)2(
3

2
− λ)(

2

3
− λ)

and see that the eigenvalues are λ = 1, 3
2 ,

2
3 .

12. Let V ⊆ R4 be the subspace spanned by





1
0
2
2



,





1
0
0
1



 and





0
0
1
−1



.

Find an orthonormal basis for V .
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Using the Gram-Schmidt process, we obtain

"u1 = 1
3





1
0
2
2



, "u2 = 1
3





2
0
−2

1



 and "u3 = 1
3





2
0
1
−2



.

13. Define what it means for a matrix to be orthogonal.

An orthogonal matrix is one whose columns form an orthonormal basis.

14. Let A be the matrix A =

[
3 2
−4 −3

]
. Compute the eigenvalues and

eigenvectors of A.

The characteristic polynomial is

fA(λ) = (3− λ)(−3− λ) + 8 = λ2 − 1

Therefore the eigenvalues are λ = 1,−1. The eigenspaces are

E1 = ker

[
2 2
−4 −4

]
= span

{[
1
−1

]}

E−1 = ker

[
4 2
−4 −2

]
= span

{[
1
−2

]}

15. (a) A is a certain 3× 3 matrix, which has three distinct real eigenval-

ues. Furthermore, two of its eigenvectors are




1
1
0



 and




1
−1

0



 .

Using only this information, find a third eigenvector for A which
is not a linear combination of the above two.

(b) Let B =




3 1 1
1 3 1
1 3 1



. Find the eigenvalues of B.
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(a) Recall that the eigenvectors of different eigenspaces are orthogo-
nal. Since A has three distinct eigenvalues, it has three orthogonal
eigenspaces of dimension one. Since two are given, the third eigen-
vector must be perpendicular to the first two. One way to find it
is by cross product. Remember that any scalar multiple will do.

For example,




0
0
1



.

(b) The characteristic polynomial is

fB(λ) = (3− λ)((3− λ)(1− λ)− 3)− 1(1− λ− 3) + 1(1− 3 + λ)

= −λ(λ− 1)(λ− 4)

Therefore the eigenvalues are 0, 1, and 4.

16. (a) Compute the determinant of the matrix

C =




2 0 −6
0 −3 2
0 0 −4



.

(b) Recall that a matrix Q is called skew-symmetric if QT = −Q.
Prove that if Q is a 3× 3 skew-symmetric matrix, then det Q = 0.

(c) Prove that if Q is any skew-symmetric matrix, than the trace of
Q is 0. Hint: what are the diagonal entries?

(a) This is an upper triangular matrix: det(C) = 2(−3)(−4) = 24.

(b) Suppose that Q is skew-symmetric. Recall that matrices have
the same determinant as their transposes. We have det(Q) =
det(QT ) = det(−Q) = − det(Q). The only number equal to its
own negative is zero, so det(Q) = 0.

(c) Suppose that Q is skew-symmetric. Then since its transpose is
its negative, we have the following relation on the entries: Qij =
−Qji. In particular, for the diagonal entries (where i = j), we
have Qii = −Qii and so Qii = 0. Since all diagonal entries are
zero, the trace must be zero.
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17. (a) Let V be a vector space. Suppose T : V → V is a linear transfor-
mation with T ◦ T = Identity. Prove that all the eigenvalues of T
are either 1 or −1.

(b) Let V be the vector space of all 2×2 matrices. Let T : V → V be
the linear map defined by T (A) = AT . Find the eigenvalues and
eigenmatrices of T . Hint: use part (a)

(c) Let V and T be as in part (b). Write down a basis for V and find
the matrix to describe T with respect to that basis.

(a) Let T : V → V be a transformation on a vector space V . Suppose
that T ◦ T = I. Suppose that λ is an eigenvalue of T . Then for
some "v, T ("v) = λ"v. But then

T ◦ T ("v) = T (λ"v)

= λT ("v) by linearity of the transformation

= λ2"v

Since T ◦ T = I, this tells us λ2 is an eigenvalue of the iden-
tity transformation. But the identity transformation has only one
eigenvalue, the eigenvalue 1. So λ2 = 1 and so λ = 1 or −1.

(b) Note that for this transformation T (A) = AT , we have T ◦ T = I.
Therefore the eigenvalues are either 1 or−1 by (a). The eigenspace
for λ = 1 are all matrices such that T (A) = A which is AT = A.
The 2 × 2 matrices which are self-transpose are the symmetric

matrices. These have a basis of

[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
. The

eigenspace for λ = −1 are all the matrices such that T (A) =
−A or AT = −A, which is to say, all skew-symmetric matrices.

These have a basis of

[
0 1
−1 0

]
. Therefore we have found two

eigenvalues λ = 1 and λ = −1, with geometric multiplicities of 3
and 1 respectively and the bases given above. (Since this adds up
to 4 = dim(V ), T is in fact diagonalizable.)

(c) Choose as a basis for V the eigenbasis given above, i.e.
[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 1
−1 0

]
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. Then T has matrix

A =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





(You could also do this the hard way by choosing the standard
basis and working it all out... but that would be silly.)

18. Consider the matrix A =




1 2 a
0 1 b
1 1 c



.

(a) Calculate the determinant of A.

(b) Find a, b and c such that the image of A is R3.

(a) The determinant is 1(c− b) + 1(2b− a) = c + b− a. (Use the first
column to expand.)

(b) The matrix has image R3 exactly when it is invertible, which hap-
pens exactly when the determinant is nonzero. Therefore a, b, c
must satisfy a (= b + c.

19. Find all the eigenvalues of the matrix A =

[
2 1
1 2

]
. Use one of the

eigenvalues you found to calculate the associated eigenvectors.

fA(λ) = (2− λ)2 − 1 = λ2 − 4λ + 3 = (λ− 3)(λ− 1)

The eigenspaces are

E1 = ker

[
1 1
1 1

]
= span

{[
1
−1

]}

E3 = ker

[
−1 1

1 −1

]
= span

{[
1
1

]}
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20. True or false? Let A =




0 1 0
1 0 0
0 0 1



. Then A31 = A.

True. Note that A2 = I. Therefore, A31 = AA30 = A(A2)15 = AI15 =
A.
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