MATH 17 REVIEW SOLUTIONS, FALL 2004

MICHAEL LAUZON

1. Differential Equations

1.1. First order equations. Solve for the General solution and then the solution that fits the given initial data, if given.

$$
\left(1+x^{2}\right) \frac{d y}{d x}=y^{2}, y(0)=1
$$

Answer: $y=\frac{1}{-\tan ^{-1}(x)+1}$.

$$
\left(1-x^{2}\right) \frac{d y}{d x}=2 e^{y}
$$

Answer: $y=\ln \left(\ln \left(\frac{|x-1|}{|x+1|}+C\right)\right)$

$$
y^{\prime}+x y=x^{3}, y(1)=1 / 6
$$

Answer: $y=\frac{x^{2}}{2}-1+C e^{-x^{2} / 2}, C=\frac{2}{3} \sqrt{e}$

$$
x y^{\prime}=y-x
$$

Answer: $y=x \ln x+C x$
1.2. Second order equations. Find general solutions and specific solutions, if appropriate:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=-7 \sin (2 x)+6 \cos (2 x), y(0)=0, y^{\prime}(0)=0
$$

Answer: $y=C_{1} e^{-2 x}+C_{2} e^{-x}+\frac{27}{20} \cos 2 x+\frac{11}{20} \sin 2 x$ (But you still have to plug in initial data to solve for C_{1} and C_{2})

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

Answer: $y=C_{1} e^{-x}+C_{2} x e^{-x}$.

2. Sequences and Series

Recall the difference between a sequence and a series. For sequences remind yourself about the squeeze lemma and L'Hospital's rule. For Series Remind yourself about the n-th term test, geometric series, p-series, the integral test, alternating series test, ratio test, and comparison tests. Also review the difference between absolute convergence and conditional convergence.
2.1. Sequences. Find the following limits:

$$
\begin{array}{cc}
\lim _{n \rightarrow \infty} \frac{n^{100}}{n^{99}+n^{47}}=\infty & \lim _{n \rightarrow \infty} \frac{\sin (n)+n}{n+1}=1 \text { (think squeeze theorem) } \\
\lim _{n \rightarrow \infty} n^{1 / n}=1 & \lim _{n \rightarrow \infty} n \ln \frac{1}{n}=-\infty \\
\lim _{n \rightarrow \infty} \frac{e^{n}}{n^{2}}=\infty & \left.\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{1+\sqrt{n}}=1 \text { (multiply by } \sqrt{n} / \sqrt{n}\right)
\end{array}
$$

2.2. Series. . Determine whether the following series converge or diverge. For geometric series give the sum.

$$
\begin{array}{ccc}
\sum_{n=0}^{\infty} n e^{-n} \operatorname{cvgs} & \sum_{n=0}^{\infty} \frac{2^{2 n}+3^{3 n}}{4^{4 n}} \operatorname{cvgs} & \sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{2}} \operatorname{cvgs} \\
\sum_{n=0}^{\infty} \frac{1}{n} \text { dvgs } & \sum_{n=1}^{\infty} \frac{n}{\ln n} \operatorname{dvgs}(\text { nth term }) & \sum_{n=0}^{\infty} \frac{e^{n}}{3^{n}-n} \operatorname{cvgs} \\
\sum_{n=0}^{\infty}(-1)^{n} \tan ^{-1} n \text { dvgs (nth term) } & \sum_{n=0}^{\infty} \frac{(-2)^{n}}{\pi^{n}+4} \operatorname{cvgs} & \sum_{n=0}^{\infty} \frac{n^{2}}{n!} \operatorname{cvgs}
\end{array}
$$

3. Power Series

3.1. Domains of convergence. Answers.

$$
\begin{array}{ccc}
\sum_{n=0}^{\infty} \frac{x^{n}}{n}(-1 \leq x<1) & \sum_{n=0}^{\infty} \frac{(x-2)^{n}}{2^{3 n}}(-6<x<10) & \sum_{n=0}^{\infty} x^{3 n}(-1<x<1) \\
\sum_{n=0}^{\infty} \frac{n(2 n)!x^{n}}{n!}(x=0) & \sum_{n=0}^{\infty} n x^{n}(-1<x<1) & \sum_{n=0}^{\infty} \frac{(x+1)^{n}}{4^{n}}(-3<x<4)
\end{array}
$$

3.2. Representing functions as power series. Answers.

$$
\int \tan ^{-1} x d x=C+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
$$

3.3. Taylor series.

$$
f(x)=\frac{1}{\sqrt{x}}, a=16
$$

Answer: $\frac{1}{4}+\sum_{n=1}^{\infty} \frac{(-1)^{n}(1 \cdot 3 \cdot 5 \ldots 2 n-1) 4^{2 n-1}(x-16)^{n}}{n!}$

$$
\sin (2 x), a=0
$$

Answer: $\sum_{n=0}^{\infty} \frac{2(-4)^{n} x^{2 n+1}}{(2 n+1)!}$

3.4. Potluck.

$$
\begin{gathered}
\int e^{x^{2}} d x=C+\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) n!} \\
\left(x^{2}+1\right) \sin x=x+\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{2 n+1}-\frac{1}{2 n+3}\right) x^{2 n+3} \\
\text { 4. PARAMETRIC CURVES }
\end{gathered}
$$

The Curve $y=\cos (2 t), x=\sin ^{2}(t),-\infty<t<\infty$ lies inside the line $y=1-2 x$, $0 \leq x \leq 1$. Remember $\sin ^{2} t=\frac{1}{2}-\frac{1}{2} \cos 2 t$.

5. Polar co-ordinates

$r=\theta$ looks like a spiral.
$r=\sin 5 \theta$ is a five petaled rose with one petal pointed in the direction $\theta=\pi$ $r=\cos (\theta / 2)$ should look almost like an 8 inside an ellipse.

