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Section 6.1

1. (Problem 31a) A linear map ¢ : V — W between vector spaces over F is a map such that ¢ (v +v’) =
©(v)+ @(v') and @(av) = ap(v) for a € F and v,v’ € V. Prove ker ¢ and Im ¢ are subspaces of V
and W respectively.

Solution: Of course 0 € ker @ because ¢ is an abelian group homomorphism. If v,v’ € ker @
then

pv—v)=0WV)—eH)=0-0=0,
sov—v’ € ker@ and ker ¢ is an additive subgroup. Finally if v € ker@ and a € F then
o(av) = ap(v) = a-0 = 0so av € ker ¢, and this concludes the proof that ker ¢ is a subspace.

Now let w,w’ € ¢ and a € F. By definition we have w = @(v) and w’ = @(v’) for some
v,v' € V. Then
wH+w =W + M) =elV+v)ecime,

and aw = a@(v) = @(av) € Im ¢. Thus shows Im ¢ is a subspace.

2. (Problem 26) Let U and W be subspaces of a finite-dimensional vector space V over a field F.
(a)
(b) Suppose UN W ={0}. Prove dim(U + W) = dim(U) 4 dim(W).

Solution: Choose bases {i1,...,uy} and {wq,...,w;,} of U and W, respectively. We will
prove {Wy,...,Un, W1,..., Wi} is a basis of U + W: to see it spans, if v € U + W, then
by definition this means v = u 4+ w for some u € U and w € W. Then we can write
u=aju +---+ ayu, forsome a; € F,and w = byw; +--- + byw,, for some b; € F.
But then

v=u+w=aqiu; +- -+ dnun +biwi; + -+ + bW,

which shows v € span{uj,...,Un, W1,...,Wn}. Now to show linear independence, suppose
ajuy +- -+ apun +bywy + -+ bywy, = 0.

Writing x = ajuy + --- + anuy, we clearly have x € U (since each u; € U), but also
x = (—=b1)wq 4+ -+ (—bm )W, which shows us that x € W. Sox € UNW = {0}, and we
conclude x = 0. But then aju; + - - - + anu,, = 0, so by linear independence we conclude
each a; is zero; similarly we conclude each bj is zero. This shows {ai,..., an,W1,..., W}
is linear independent, concluding the proof it is a basis for U + W.
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(c) Prove in general that dim(U + W) = dim(U) + dim(W) — dim(U N W).

Solution: Let{v{,...,v:}be abasis for UNW (so dim(UNW) =n). Then {vq,...,v,}is

a linearly independent subset of U, so by Theorem 6(2) we can extend it to a basis of U, say
Vi, ..oy vy U, ...y uy ). Similarly we can extend to a basis of W, say {vi, ..., Vn, W1,..., W}
In particular dim(U) = n 4 k and dim(W) = n + £ in our notation.

We now claim that {vi,...,vn,U1y..., Uk, W1,...,W,}is a basis for U+W. If we can prove
this then we will have

dim(U+ W) =n+k+{=dim(UNW)+ dim(U) 4+ dim(W)

which gives the result by rearranging. To see that the set spans U + W, supposev =u+w €
U + W, because vi,...,Vn,Us,..., Ux span U, we can write

U=avy +---+ anVp + Qnpiuy + - + AUk

for some a; € F. Similarly w = byjvy +--- 4+ bpvy + bppiwy + -+ + by ew, for some
b; € F. Then because v = u + w we have

v=(ar+by)vi+---+(an+bu)vntaniw +- -+ anpe F b awy -+ b ewe
which shows vi,..., v, U1, ..., W, Wy, ..., W span V. For linear independence, suppose
avi+ -+ apvn Fbjur + -+ bug Fcrwr -+ egwe =0

for ai, by, ¢y € F. Let x = —(c1wq + - - - + cewy); clearly x € W because each w; € W. But
on the other hand

X=a1vy + -+ apvp +bjug +- -+ bru € U,

and therefore x € UNW. But {vy,...,vn}isabasisfor UNWsox = ajvy + -+ ajvn
for a/ € F. Then we have the equation

(a1 —ap)vi+-+ (an—aj)vn + brus + - + brux =0.

By linear independence of {v1,...,vn,u1,...,ux}, we see all coefficients here are zero, in
particular the b; are zero. But then our original equation reduces to

avi+---+anvn +ciwy +---+cewe =0

which by linear independence of {v1,..., v, W1,...,w,}implies all a; and c; are zero. This
completes the proof of linear independence.
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Section 6.2

3. (Problem 4b) Show +/2 is algebraic over F = Q(1 + i) and find its minimal polynomial.

Solution: /2 is algebraic over F because it is a root of the polynomial x> —2 € F[x]. We claim this
is the minimal polynomial (call it m) as well: we know that m(x)|x% —2, so deg(m) = 1 or 2, and
in the case deg(m) = 2 because both polynmomials are monic we can conclude m(x) = x% — 2.
If deg(m) = 1 then this means v/2 € Q(1 + 1); one can do a straightforward argument to show
that {1, 1 + ,/2} is linearly independent over Q to show this is impossible. Here is an alternative
approach: because Q(v/2, 1+ 1) = Q(1 4+ 1)(v/2), we have deg(m) = [Q(v/2,1+1) : Q(1 +1)].
But similarly, the minimal polynomial occuring in the solution in part (a) has degree 2 which by a
similar remark shows [Q(v/2, 14 1) : Q(v/2)] = 2. But now we can consider the diagram

Q(v2,1+1)

and Theorem 5 (sometimes called the Tower Law) lets us conclude [Q(v/2,1 +1) : Q(1 +1)] =2,
therefore deg(m) = 2 so m(x) = x? — 2. [Note: clearly this method is overkill for the problem at
hand, but it is a useful method to know for future problems.]

4. (Problem 13a) Find [E : F] where E = Q(v/3 + v/5) and F = Q(+/3).

Solution: Write u = v/3 + /5. Notice that

3
V3= ”TM“ €Qu) =E
so we actually do have F < E. Also notice that E = F(u). Let m € F[x] be the minimal polynomial
of u over F. By Theorem 4 we know that [E : F] = deg(m). Also notice that (u — v/3)2 = 5, so
expanding we see that 1 is a root of the polynomial f(x) = x> —2v/3x—2 € F[x]. By Theorem 3 we
conclude that m | f in F[x]. Therefore we either have deg(m) = 1 or deg(m) = 2. If deg(m) =1
then [E : F] = 1 which implies E = F which implies v5 € Q(+v/3). But by a very similar
argument to Section 6.1 Problem 9(a) we can conclude that {1, \/?:, \/5} is linearly independent
over Q, rendering v/5 € Q(+/3) impossible. Thus we conclude deg(m) = 2 and hence [E : F] = 2.




