
MATH 100B Alex Mathers HW 4

Section 4.2

1. (Problem 22b) Show f(x) = 4x5 + 28x4 + 7x3 − 28x2 + 14 is irreducible over Q[x].

Solution: Notice that f(x) ∈ Z[x]. Furthermore notice 7 divides every coefficient except the
leading term, and that 72 does not divide the constant term. Thus we can apply Eisenstein’s criterion
with p = 7 to deduce that f(x) is irreducible in Q[x].

2. (Problem 43c) If σ : F[x] → F[x] is a ring automorphism that fixes F, show there exist a ∈ F r {0} and
b ∈ F such that σ(f) = f(ax+ b) for all f ∈ F[x].

Solution: The key point is that an automorphism of F[x] which fixes F is determined by the image
of x. To see what we mean, let f ∈ F[x], say f(x) = a0 + a1x+ · · ·+ anxn. Using the fact that σ
is a ring homomorphism, and that σ(ai) = ai for all i (because σ fixes F), we calculate

σ(f) = σ(a0 + a1x+ · · ·+ anxn)
= σ(a0) + σ(a1)σ(x) + · · ·+ σ(an)σ(x)n

= a0 + a1σ(x) + · · ·+ anσ(x)n

= f(σ(x)).

Because this holds for any f ∈ F[x], to complete the problem it suffices to show that there exist
a, b ∈ F, a 6= 0, such that σ(x) = ax+b, or in other words it suffices to show that deg(σ(x)) = 1.
To see this, let p(x) = σ(x) and let q(x) = σ−1(x). Then we calculate using the result of the
calculation above (with f replaced by q)

x = σ(σ−1(x)) = σ(q(x)) = q(σ(x)) = q(p(x)).

Now we claim that deg(q(p(x))) = deg(q) deg(p); this will imply that deg(q) deg(p) = 1, which
lets us conclude deg(q) = deg(p) = 1, which completes the proof because we were supposed to
show that deg(σ(x)) = 1.

To prove the claim, let m = deg(q) and n = deg(p), so we can write p(x) =
∑n

i=0 aix
i and

q(x) =
∑m

j=0 bjx
i where an, bm 6= 0. Then using the multinomial theorem we have

q(p(x)) =

m∑
j=0

bj(p(x))
j =

m∑
j=0

bj
( n∑
i=0

aix
i
)j

=

m∑
j=0

bj

( ∑
k0+···+kn=j

(
j

k0, . . . , kn

) n∏
i=0

(aix
i)ki

)
.

By inspection we see the largest power of x occuring in this expression is xnm, and the coefficient
is amn bm 6= 0, which shows deg(q(p(x))) = nm = deg(q) deg(p).



MATH 100B Alex Mathers HW 4

Section 4.3

3. (Problem 1b) In each case find a monic polynomial h in F[x] such that I = 〈h〉, where

I =
{
f ∈ F[x] | the sum of the coefficients of f is zero

}
.

Solution: We know there exists some monic polynomial h such that I = 〈h〉. Notice that h 6= 0

because I 6= {0} (for instance x− 1 ∈ I), and also notice that h cannot be a constant because I does
not contain any nonzero constant polynomials (this easily follows from the definition of I). Thus
deg(h) > 1. Now because x − 1 ∈ I = 〈h〉, we can write x − 1 = h(x)q(x) for some q ∈ F[x].
Then we see deg(x − 1) = deg(h) + deg(q), so because deg(x − 1) = 1 and deg(h) > 1 we
conclude deg(h) = 1 and deg(q) = 0. But because x − 1 and h are both monic we conclude that
q = 1, and thus h(x) = x− 1, so I = 〈x− 1〉.

4. (Problem 29) Let F be a field and h = pq in F[x], all polynomials monic. If p and q are relatively prime
in F[x], show that F[x]/〈h〉 ∼= F[x]/〈q〉 × F[x]/〈q〉.

Solution: Because p and q are relatively prime, we have lcm(p, q) = pq = h as well as
gcd(p, q) = 1. Then using Problem 25 we see that

〈p〉 ∩ 〈q〉 = 〈lcm(p, q)〉 = 〈h〉 and 〈p〉+ 〈q〉 = 〈gcd(p, q)〉 = 〈1〉 = F[x].

The latter equality shows we can invoke the Chinese Remainder Theorem, and doing so we find

F[x]/〈h〉 = F[x]/(〈p〉 ∩ 〈q〉) ∼= F[x]/〈p〉 × F[x]/〈q〉.


